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Abstract

We are interested in modeling how humans perform complex, creative tasks — tasks that

occur over multiple steps and have poorly-defined rewards. These tasks are difficult to learn

under current paradigms (e.g. imitation learning paradigms like language model pretraining

demonstrably fail to encourage long-range coherence or learn complex planning; reward-

based learning requires either large preference datasets or clearly defined rewards, which

we lack). Yet, humans are able to infer the rewards, methods and goals of other humans

simply through partial observations of their actions and outputs. This is known, in the cognitive

sciences, as emulation. We take inspiration from this and introduce a new machine learning

new approach, called emulation learning. In emulation learning, we assume human creative

processes progress via trajectories (i.e. τ = (a, s)) consisting of actions (i.e. a = a1, a2, . . .)

and states (i.e. s = s1, s2 . . .); we assume that we only have observability into the final, goal

state of a complex human process (i.e. sn = g, e.g., a published news article). Emulation

learning progresses in two main steps: (1) backwards modeling, where actions are inferred

via an inverse function (i.e. qθ(a|g)), and rewards are inferred via inverse reinforcement

learning [2]; and (2) trajectory modeling, where a policy function (i.e. π(a|s0)) and transition

function (i.e. P (st+1|st, at)) is learned from inferred actions (i.e. ã) or rewards (i.e. r̃).

We focus our exploration of emulation learning to primarily the domain of computational

journalism and introduce four novel computational approaches to journalistic tasks. In

journalism, process data is scare but outcome data is plentiful; decisions made by humans are

normative yet difficult to explain, making it an ideal testing ground for emulation learning.

In Chapter 2, we introduce news-finding: how journalists select events to cover. We explore

constructing the inverse function and confront observability challenges: observable goal-states

are distant from starting states (i.e. s0 = x), we must construct observation channels to

make inferences about latent actions. In Chapter 3, we introduce source-finding: how
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journalists find sources to support their stories. We explore modeling the policy function

and confront challenges around composibility, hierarchical modeling, and comparing

latent action spaces. In Chapter 4, we introduce story-structuring: how journalists assemble

facts into narratives. We explore modeling the state transition function, realizing a sequence

of actions into a state space (e.g. converting an outline, or document plan, into a final

document). Finally, in Chapter 5, we introduce story-editing, how stories get updated with

new facts. We use observed data about partial state-spaces (i.e. article versions that we can

observe) to infer more temporal dynamics about trajectories. Emulation learning contains a

number of challenges, as we will see. But we are in an era where (1) the need is present

for assistive tools (e.g. news deserts exist across the world) and (2) large models can help

us make progress in areas towards more sophisticated forms of social and behavioral

learning. Emulation learning is not only a necessary approach to learning how to perform

more sophisticated tasks, it is also a tantalizing approximation of the very human process of

studying each other and learning from each other’s works. In understanding our processes,

we might be able to learn more about ourselves.
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Preface

Let me start, first, with what motivates me. There are a few moments that stick out in

my mind as setting the course of my academic mission, to understand how humans perform

creative tasks and build tools to assist in their workflows – with a specific focus on journalism.

The first was a lunch meeting I had in 2012 with a mentor, Robert Neer. He was a

graduate student at Columbia University, when I was an undergraduate, and he described

how fun it was to work for his student newspaper, The Harvard Crimson. My interest was

piqued, and that summer I landed an internship at Huffington Post. It was a fun internship,

and I was becoming more interested in the pace and energy of newsrooms – magical

places, it seemed, where wildly passionate writers came together to practice their craft.

One afternoon, I was sitting in the newsroom reading an article published by The New York

Times1. This article was about how, between 2003-2005, Walmart Mexico bribed Mexican

officials to build Walmart superstores on historic sites. It contained shocking details and

damning interviews — I was dumbfounded and furious. So, it turns out, were other

readers. Within days, the governments of both the United States and Mexico announced

investigations, Walmart’s CEO had stepped down, an internal investigation was launched.

Justice, it seemed, had clearly and unequivocally prevailed. Indeed, I would learn, this is

not just anecdotal: research has found that newspapers causally reduce government and

corporate corruption [3, 4, 5]; $1 spent by a newspaper yields $1,000 in social benefits [6].

Feeling the power of the story, and seeing how it righted a wrong through the simple

elegance of words stirring collective action, I was convinced to devote my life to this. In

1How Wal-Mart Used Payoffs to Get Its Way in Mexico, by David Barstow and Alejandra Xanic von
Bertrab, published Dec. 17, 2012. https://www.nytimes.com/2012/12/18/business/walmart-bribes-teot
ihuacan.html
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2014, after tons of practice and lots of good luck, I got my dream job at the Times2, working

as both a journalist and data scientist. Every day for the next 4 years, I walked through

those grand doors at 620 8th avenue, past the steel “The New York Times” logo and into the

glistening glass newsroom; I rode the red elevators and overheard the crisp conversation

of reporters and editors. On the quiet 10th floor, I would show visitors the cathedral of

Pulitzers and letters written by heads of state, attesting to the skill and importance of our

work. Meeting rooms carried names of reporters who lost their lives while reporting – in

the wars, famines and strife they covered. Every day felt like a mission to save the world.

Yet, it was becoming impossible to ignore what was happening in the broader landscape

of journalism. The Times was flourishing3, but the outlook for most news outlets and

magazines around the world was incredibly bleak. Revenues that had historically sustained

news outlets were being eaten by Craigslist, Google, Facebook and other large internet

companies [6] – the news industry had lost as much as 80% of its advertising revenue

to tech giants since the 2000s [7]. This was having devastating consequences. By 2020,

approximately two-thirds of newspaper journalists had lost their jobs, and about one-third

of newspapers had closed [8]. By 2016, half of U.S. counties had a single local newspaper

at most, and by 2024, 203 counties had no local news outlets at all [9, 10]. Misinformation

and propaganda were filling the void. I left the Times in 2018 to start my PhD, convinced

that something had to be done (and that I, specifically, could help). My hope was that we

could find tools and techniques to reduce costs and raise revenues. And indeed, there were

technologies emerging in 2018, in both artificial intelligence (AI) and Natural Language

Processing (NLP) that looked promising. If each tool help a little bit; taken together, I

hoped, it could be enough to help newspapers become profitable again, expand into local

communities and revitalize the decimated news landscape. Now, at the end of my PhD, we

are in a curious moment – AI has progressed farther and faster than seemed conceivable in

2I am a, now, 6 year resident of Los Angeles and a proud reader of the Los Angeles Times. Readers of the
LATimes also call it by the abbreviated title the Times. Do not take my short-hand reference to the Times as
municipal favoritism; I just do not want to waste a single word of my readers’ attention.

3Mainly on strength of it’s subscription business.
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2018. Almost no one needs convincing that AI tools can, indeed, save newsrooms time and

money, but everyone needs convincing that they can do it well.

What does this mean to do journalism well? Is it to publish the article that will topple the

government, drive the clicks, win the prize? Sometimes, it is more subtle than that. Let

me start with a motivating example. A recent story published by the New York Times tells

how Saudi Arabia donated two leopards to the Smithsonian Zoo in Washington DC4. It is

interesting, light and yet revelatory, weaving in the personal dimension of politics. The

author, in an interview, said that he found the story at the end of a White House press

release5 buried in between massive economic deals ($600 billion investment commitment)

and defense agreements ($142 billion defense sales). What makes it stand out, though, are

the sources used to tell the story. He used an eclectic mix: Brandie Smith, director of the

Smithsonian National Zoo (she was directly involved in the negotiations); Roger Stone, a

former presidential advisor (for insights into Trump’s thinking); the Holy Bible (to provide

cultural context – “mountains of leopards”, in Song of Solomon 4:8); and then, Joseph

Maldonado or Joe Exotic, subject of the documentary Tiger King (for expertise on big cats).

This is clearly a good article: enjoyable, memorable, well-crafted. What makes it good?

Imagine we want to build a system to help journalists find stories and find sources to support

these stories (two tasks that we will consider in depth in this thesis). Would this system

have ever found this story, buried in the press release, or recommended these sources? Can

traditional quantitative metrics explain why these sources together create a good story (e.g.

diversity, factuality [11, 12, 13, 14, 15, 16])? These are not frivolous academic questions —

they are at the core of what it means to support human creative activities.

4Leopards on the Potomac! Trump Is Delighted by Deal With Saudis for Rare Cats. By Shawn McCreesh,
published June 4, 2025. https://www.nytimes.com/2025/06/04/us/politics/leopards-trump-saudi.html

5https://www.whitehouse.gov/fact-sheets/2025/05/fact-sheet-president-donald-j-trump-
secures-historic-600-billion-investment-commitment-in-saudi-arabia/
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Creativity, Symbolic Systems and Norms

In this thesis, we seek to study exactly these kinds of complex, creative tasks – of which

the creation of news is just one. These tasks are intensive and multi-step; they are subjective

(i.e. it’s unclear when a creative output is good or bad) and humanistic (i.e. they are

associated more with communicative social processes than physical or technical processes).

Examples of ways AI can aid in such tasks include: in news, as mentioned, a system that

detects a newsworthy story in a press release and finds relevant sources [17, 18]; in writing, an

assistant that helps write well-structured tweets [19]; in music, a generative music model that

helps composers ideate with different songs [20]; in law, a patent analyzer that establishes

an idea’s novelty (or lack thereof) [21].

Newsworthiness, well-structuredness, musicality and novelty: these are all abstract cultural

metrics, or norms, driving creative tasks, and they resist simple definitions. What are they

and, importantly for our purposes, how are they created and understood? Take musicality:

Susan Langer, in her seminal 1942 work Philosophy in a New Key [22], posits a process by

which musicality arises within a culture. “All of our sense-data is symbolic”, she declares

– we interpret the world using symbols and express these interpretations to each other,

forming shared symbolic vocabularies. Composers write songs, she writes, following a

process: once a symbolic vocabulary is established (e.g. combinations of tones, rhythms

and dynamics), composers then choose sequences of symbols from this vocabulary (e.g.

themes, melodies), and decide, via higher-level actions, how to string these sequences

together (e.g. adhering to compositional forms). Accumulations of symbolic rules, or

norms, established within the composers’ social group, or culture, inform musicality. How

musical, or “good”, a composition is, she writes, depends how well it’s symbolic sequences

capture communicative intent while acknowledging these norms.

Do these observations apply to our other examples? Galtung and Ruge, in their 1965

work The Structure of Foreign News [23], similarly identify a symbolic process by which

the newsworthiness of events are established (i.e. an event is newsworthy when it is an
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“infrequent event”, “meaningful event”, “national-level event”, etc.). Journalists, they write,

select events containing these symbols; writers and editors construct a story that emphasizes

these symbols. Newsrooms “follow steps in the news chain [from journalists→writers

→ editors] where each step anticipates the reaction of the next step in the chain,” and

interprets and re-expresses the symbolically newsworthy aspects of the event. As Stuart

Hall writes in Writings on the Media, “‘News values’ are one of the most opaque and deep

structures of meaning in modern society. All ‘true journalists’ are supposed to possess it:

few can or are willing to identify and define it.” [24]. We can see the same observations

being made by theorists of novelty and writing structure: Van Dĳk in News as Discourse [25],

identifies structural elements in writing (e.g. “lead”, “background”, use of “data”), how

they arise over time, are combined in news stories, and perceived by readers.

So creative acts, and their associated metrics (or norms) are symbolic generative processes,

based on shared, emergent vocabularies. By focusing on symbolic processes, we frame

creative work, here, not as the product of sudden, inexplicable sparks, but quasi-linguistic

processes. We open the door to studying creative work like linguistics has been studied: at

large scale, observationally and computationally, with the modern machinery of language

modeling. Even the wild creativity that yields a story about leopards and the White House,

sourcing Tiger King himself, can be computationally understood and supported, if we

understand how it came to be.

Emulation Learning: An New Approach to Studying Creative Processes

Can we understand creative symbolic systems and the norms that govern their usage,

even if these systems are largely unobservable [24]? And if these norms and symbols are not

fully known to a composer, a journalist, or a writer, how might we hope to build models that

understand them? This thesis endeavors to establish framework to answer these questions,

which I call emulation learning. I will introduce emulation learning more formally in Section

1.2, but, on a high-level, we’ll seek to (1) study finished creative works – or the end-state of a
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human creative process, (2) infer the process of creation, including inferring the unobserved

actions that gave rise to the finished work and (3) use these inferences to understand human

norms, rewards and decision-making. Emulation learning is, at the core, concerned with

norm-finding (as opposed to norm-breaking) and considers, first-and-foremost, the actions of

the creator (as opposed to their thoughts, intentions and directives). We will close this

section discussing some tensions at the heart of our study creativity.

Firstly, the focus on norm-finding might strike many readers as odd. Norm-finding

involves learning and applying the symbolic rules that guide creative works in a culture —

for example, mastering the inverted pyramid in journalism [26] or Sonata-form in classical

music [27]. To many readers, creativity might seem to lie in newness of the creative work and

how it deliberately deviates from those rules: indeed, the Tiger King example is interesting

because of how it stands out and subverts our expectations. Should we not be interested

in developing systems that break norms, rather find and adhere to them? My focus is on

norm-finding, for several reasons. Modeling norm-finding is the more tractable: works

that follow norms are vastly more present than works that breaks them (as we will show

repeatedly throughout this thesis — in Sections 2.2.4, 3.2.3, 3.4, 5.2.3, 5.3.4 — creative

actions are predictable and many creative acts do not break norms). Moreso, insights from

norm-finding can later inform norm-breaking. Norm-breaking operates within a field of

shared reference: one cannot meaningfully break a norm without knowing (and signaling

that one knows) the norm being broken or which norms are stable enough to break.

Secondly, emulation’s focus on inferring creator’s actions, first, rather than their internal

monologues, intentions and, deeper still, subjective experiences might also seem misguided.

These deeper influences doubtlessly impact creators’ work and explicitly modeling them

at the outset may improve emulation. In practice, because the actions we infer are

unobserved, emulation mixes reasoning and action together, like other modern frameworks

[28]. Theoretically, though, emulation’s approach is intentionally behavioral [29, 30] — we

posit that actions are more observable and predictable than intentions; and, like classic
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production theories for communication [31, 32], modeling actions yields more stable

pathways towards inferring higher-level intentions. Emulation is inspired, too, by advances

in computational language modeling, where evidence similarly suggests that predicting

actions (e.g. the next word chosen) can give us bases (base models) [33] to more explicitly

model rewards, intentions and motivations.6

Finally, emulation’s emphasis on studying the end-state of the creative work, rather than

seeking to observe the process of creation, might seem misguided as well: much research

in Human-Computer Interaction (HCI) seeks to observe end-to-end human processes with

the awareness that many steps might be hidden from the final output [34, 35, 36, 37, 38, 39,

40]. However, end-state analysis is a key method of social learning that has a long basis

in cognitive sciences research and, we believe, is actually understudied in computational

domains. We will discuss emulation as a social learning paradigm extensively in Section

1.2.1, but here, we will make our point by returning to the study of creativity and creative

processes. Getzels and Csikszentmihalyi, in their study of the problem-finding aspects of

creativity [41], identify a crucial creative stage to be the one in which creators define the

end-goal, or what is worth working on.7 By focusing on the end-state, or the goal-state, and

inferring the decisions that lead to it, emulation seeks to understand how creators navigate

the space of possibilities to define, select and pursue problems. This focus provides a

6Kevin Knight, my academic grandfather, once described a scene capturing the early incredulity around
language modeling. Kevin and another professor were in a DARPA meeting. The other professor was an
“old school grammar guy”, in Kevin’s words, and the topic came up about whether a predictive model for
language could be built. “We’re supposed to be mathematically capturing what is and isn’t a legal sentence
of English [Chomsky],” the MIT professor said, “we’re not supposed to be predicting the next word that’s
going to come out of someone’s mouth [Skinner]”. Then, in front of two program officers dressed in military
gear, he took off his shirt and said: “DARPA is funding mind-reading! Mind-reading is impossible! Why are
you doing this, DARPA?” This action was, apparently, so inexplicable as to prove the futility of predicting
thought, behavior and language. Clearly, our modern language models beg to differ. The same emotional
reactions, I find, surround discussions about computational creativity. By explicitly casting creative acts as
symbolic processes, I hope we can one day make the same kind of progress that we have made with language
modeling.

7In more detail, Getzels and Csikszentmihalyi studied artists painting still-lives in studios. They found
that some artists (a) took considerably more time than others to place which objects in their drawings (b)
indicated, in post-interview comments, a more searching attitude in their work and (c) took longer to have
their basic concepts become clear. After following these two groups of artists through their careers, they
found that the artists that spent more effort defining the problem they wished to draw produced art judged to
have more merit and had more professional success in life.
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principled way to model creativity in terms of culturally grounded choices.

Before I end this preface, I want to step away from theorizing and return to the practical,

to explain why this work is important. It’s not obvious why we would need AI systems

to help journalists, writers and composers. Are these jobs not already in danger of

disappearing? Are there not already many humans wanting, hoping, dreaming of doing

these jobs well? To return to the question posed in the beginning of this preface: should we

use AI models to assist humans? I believe the answer, in many cases, is “yes”. Human creative

processes are formed and emerge via similar processes and, as I will show repeatedly in

this thesis (e.g. in Sections 2.2.4, 3.3, 4.2), are poorly understood by current models. A

unified approach to approaching these problems, and a way of casting them in the same

framework, can help us learn more about the symbolic systems that drive our worlds, the

human behaviors that create them, and the tools we need to advance.
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Chapter 1

Introduction

I am interested primarily in answering the following question: can we model complex,

creative tasks with high enough performance that we can build practically useful tools? I

defined complex, creative tasks in the Preface, but to recap: I define a complex task as a task

that involves multiple steps (e.g. like investigating a claim, composing a piece or writing a

news article). Let’s define a creative task as a task with a poorly-defined goal or output,

that is usually culturally determined and/or clarified by the human executing the task.

More formally, let S be a space of possible states andA a space of possible actions. A task

is specified by an initial state s0 ∈ S and a finite sequence of actions (a1, . . . , aT ) ∈ AT which,

under transition dynamics st+1 ∼ p(st+1|st, at) for t = 1, . . . , T, produces the trajectory

(s1, . . . , sT ). We equip the task with a reward function R : S → R, which assigns a scalar

payoff R(sT ) upon completion. We call the task complex if T > 1, i.e. it requires multiple

steps to reach its terminal state sT . We call the task creative if neither the goal state, g (i.e.

the desired outcome(s) g ⊆ G of acceptable terminal states) nor the reward function R

assessing the quality of terminal states, are fully specified. Taken together, a complex,

creative task is a task that requires a multi-step action sequence (a1, . . . , aT ) driving the

system from s0 to sT , and has poorly defined rewards R(sT ) and goals G. Our modeling

goals for creative tasks are either to: (a) learn a policy model π : S → A that, at each state

st, chooses action at ∼ π(at|st) so as to approximate the human creative strategies. Or (b)

to recover the reward model R : S → R – which encodes latent human preferences over
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1.1 Current Approaches to Modeling Creative Tasks

terminal states – or the goal set G ⊆ S of acceptable outcomes. A learned policy π enables

us to build multi-step workflows, while a learned reward function R or goal set G provides

explicit insight into the characteristic of creative tasks.

1.1 Current Approaches to Modeling Creative Tasks

Can complex, creative tasks be modeled? As discussed in the Preface, framing these tasks

as symbolic processes [22] allows us to connect them more explicitly to computational

advances in language modeling. I now briefly summarize the two dominant methods that

researchers in NLP are using to model human symbolic processes.

1.1.1 Pre-training on self-supervised objectives

Firstly, researchers seek to implicitly model human creative processes by modeling observed

text using pre-training objectives: they train large models on huge corpora using relatively

simple self-supervised learning (SSL) tasks. A standard SSL task in natural language

processing, my primary domain of study, is next-token prediction, which is defined as follows.

Next-token prediction seeks to train a large language model (LLM) to predict the sequence

of tokens observed in a large corpus,D. Formally, let V be a finite vocabulary of tokens, and

let D = [(x1,1, x1,2, . . . , x1,T1), (x2,1, x2,2, . . . , x2,T2)...] be a sequence of tokens in a sequence

of documents such that xij ∈ V for all xij . The next-token prediction task is defined as

learning a conditional probability distribution Pθ(xij | xi,<j).

The next-word prediction task implicitly benefits from modeling unseen thoughts,

intentions and actions taken by humans while generating D (i.e. modeling what the writer

intended and what the writer did while writing – their thoughts and actions – can help to

predict the next word in a document). Researchers have shown that knowledge of many

complex, creative tasks is learned via pretraining [42, 43], and these can be elicited with the

right prompt. Prompting has been shown to elicit research-type workflows, like browser-
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1.1 Current Approaches to Modeling Creative Tasks

aided search and citation generation [44] and research tools [45, 46]; interactive systems for

creative writing assistance [47, 48, 49, 50, 51]; simulated agents [52, 53]; even social norms

and moral judgments have been learned [54, 55, 56, 57]. Prompt-based approaches have

also emerged in more domain-specific tasks, like those related to journalism [58, 59].1.

And yet, I present evidence in this thesis that, for the tasks we study, pretrained models

underperform fine-tuned models (and, interestingly, humans performing the same tasks)

to such a degree, that they show scant evidence of having modeled the tasks’ underlying

norms and goals. This accords with an emerging consensus shows that prompt-based

approaches alone have limits across a range of norm-driven creative tasks [60, 61, 62, 63].

This is unsurprising: while some creative action sequences might help the SSL objective,

there are likely others that are too complex, diffuse, or present in a small section of the

training corpus, and are swamped out by many clearer sources of predictive signal (e.g.

topic, syntax, word-distributions).

1.1.2 Tuning with hand-labeled data or hand-crafted rewards

Secondly, researchers seek to model complex, creative tasks post-training, a combination of

techniques that include: supervised fine-tuning (SFT) on hand-crafted training datasets,

distillation, inference-time techniques (e.g. test-time steering) and, most importantly,

reinforcement learning (RL). These techniques rely on access to one of two things: a

high-quality hand-crafted dataset or a feedback model (i.e. reward model).

In more detail, RL-based approaches typically redefine the next-token prediction model

as a policy model πθ(at+1 | at, st), where the token to sample, now, is labeled as an action,

at+1 and the state, st contains the previously generated tokens, a1, . . . at [64, 65]. A complete

generated output corresponds to a trajectory τ = ((a1, s1), (a2, s2), . . . , (aT , sT ), sampled

from the model’s autoregressive distribution πθ(τ) =
∏T

t=1 πθ(at | at−1, st−1). We maintain

1The publisher of the Palm Springs Post, a small newspaper in Palm Springs, California, has described run-
ning large parts of the reporting process using prompts to detect newsworthiness. https://www.fastcompany.
com/90954997/how-local-news-is-using-ai-to-tell-better-stories-and-hold-leaders-accountable
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1.1 Current Approaches to Modeling Creative Tasks

the predictive framing of the last section, where a refers to a token, but we note that “token”

here often refers to more than just words – a refers to actions, thoughts and other generations

from the language model. After generating a full trajectory, a scalar reward R(τ) ∈ R is

assigned and the training objective is to maximize the expected reward over trajectories:

Eτ∼πθ [R(τ)]. In this way RL frameworks allow the model to improve its behavior based on

a broad variety of feedback signals, even in the absence of gold labels. Researchers have

found great promise in this direction for tasks with enough paired preference data that reward

models can be trained, or tasks with verifiable rewards (e.g. math or coding) where reward

models are simpler. Reward-based learning has also shown great promise in inducing

greater reasoning (i.e. latent variable modeling [66, 67]) capabilities in language models

[68, 69, 70] leading to some tantalizing demonstrations of human-like behavior, like the

famous “a-ha” moment observed in Deepseek-R1’s reasoning threads [71]. Beyond simply

improving performance on downstream tasks, reasoning threads might capture deeper

representations of creative workflows [72, 73] recreating generative linguistic processes [74,

75, 76] (although some have argued against this interpretation [77, 78]). Reward-based

learning has subsequently been applied to many more creative and open-ended tasks (e.g.

in search [13, 79, 80, 81], web-browsing [82, 83, 44] and writing [84, 85, 86]). And yet, the

applicability of reward-based approaches faces fundamental limitations for most creative

tasks. As I will show in more detail in the body of this thesis, many of the tasks we will

consider lack fundamental components that make reward-learning possible. Lack of reward

function: Creative tasks, by definition2, have poorly defined or subjective goals, and as such

defy simple, heuristic reward functions that are typically used for RL training. So, it is

difficult to specify a-priori a clear reward function to determine what makes a creative work

good or bad. Lack of hand-labeled training data: While data can be labeled for individual

tasks, it is prohibitively expensive to label enough data for all creative tasks.

2By the problem-finding definition of creativity [41], the creative act is the act of defining the goals of
the task, or the problem to be studied (or, as Einstein says in The Evolution of Physics, “The formulation
of a problem is often more essential than its solution which may be merely a matter of mathematical or
experimental skill”).
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1.2 Emulation Learning: Learning from Other Humans

Figure 1.1: Emulation Learning: First,
a creative work is analyzed to infer
the actions that generated it, which
can then be used to learn a reward
function. These are then used to
train models to aid in creative work-
flows (either via supervised fine-
tuning or reinforcement learning).

To recap, the two approaches typically used to adapt

LLMs into creative workflows fall short. The first,

pre-training – training models on self-supervised

learning objective like next-word prediction – often

fails to capture higher-order factors in the creative

process, like intent, norms, and actions. The second,

post-training – training models using labeled data or

hand-crafted reward models – fails due to lack of

training data or unclear rewards.

I will now introduce Emulation Learning (EL) a

novel and generalist framework for modeling com-

plex creative tasks. EL takes as the object of its study

finished creative works (i.e. news articles, musical

pieces, creative stories) and performs latent action

inference to infer the actions or steps taken in produc-

ing it (i.e. the process of creation: actions, thoughts

and reasoning performed by the creator, forming

each creative step). It then uses these inferences as training data, either to directly supervise

a policy model or to learn the reward function (i.e. the overall guiding norms, motivations

and intentions driving the process). Finally, it uses these data and/or reward function to

drive learning – either through supervised fine-tuning or reinforcement learning. This

flow is shown in Figure 1.1. Formally, let a creative task be modeled as a Markov Decision

Process (MDP)M = (S,A, P, r, γ), where S is the space of possible states a creative work

could be in (e.g. Story idea, First Draft as shown in Figure 1.6), A is the space of creative

actions (e.g. Call source A, Find Background), P (s′ | s, a) is the (possibly unknown) transition
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1.2 Emulation Learning: Learning from Other Humans

s1 s2 s3 s4

a1 a2 a3Actions:

States:

Action #1:
(e.g. Call
source A)

Action #2:
(e.g. Call

opposing source B)

Action #3:
(e.g. Find

background)

State #1:
Story Idea

State #2:
First Draft

... State #4:
Published Draft

Figure 1.2: Latent Action Inference in Emulation Learning: A hypothetical state-action
trajectory, showing a plausible inferences for the actions that would have generated the
final state. Right now, a broad news production trajectory τ is shown. In Chapters 2-5, we
will return repeatedly to this figure and framing and refine it. Crucially, in this notation,
only gray states (i.e. the final state, here) is observed; all white states (i.e. all other states
and actions, here) are unobserved.

function describing how actions transform states, r : S × A → R is an unknown reward

function encoding the norms, motivations, and intentions of the creator. In standard RL,

we observe trajectories τ = (s0, a0, s1, a1, . . . , sT ) with associated rewards rt, and learn a

policy π(a | s) that maximizes expected return. In Emulation Learning (EL), we instead

observe only goal states G ⊂ S, where each g ∈ G corresponds to a finished creative work.

The underlying action sequences and rewards that produced each g are unobserved.

Each g arises from an unobserved creative trajectory τg = (s0, a0, . . . , sT = g) under

some expert policy π∗ and reward function r∗. The objective of EL is latent policy inference:

recover π̂ ≈ π∗. Practically, we decompose the learning process into two stages:

1. Stage 1: Backwards Inference:

(a) Latent Action Inference: Given goal-state g, reconstruct a plausible trajectory τ̃g via

an inverse model qϕ(τ | g) (possibly leveraging structural markers in the observed
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1.2 Emulation Learning: Learning from Other Humans

creative work g, e.g. discourse schema for news, Section 1.2.2).

(b) Inverse Reinforcement Learning: Building off Stage 1a, take inferred latent trajecto-

ries τ̂g ∼ qϕ(τ | g) and infer a reward function r̂ consistent with τ̃ .

2. Stage 2: Trajectory Modeling:

(a) Imitation-based policy learning and Reward-based policy learning: Building off Stage

1a, take inferred latent trajectories τ̂g ∼ qϕ(τ | g) for each goal g, then fit π̂ via

behavioral cloning on the inferred (ŝt, ât) pairs. Building off Stage 1b, take

inferred reward function, r̂, optimize π̂ by maximizing E
[∑T

t=0 r̂(st, at)
]
.

(b) Learn other components of the trajectory: Train other models, like a state transition

model P (st+1|st, at) (i.e. to realize actions in the state space, e.g. for generation).

The learned (π̂, r̂) can then be used to produce new creative works, or in broader agentic

pipelines. In this way, EL learns policies from final-state data through latent action and

reward inference. Emulation, I will show, is a practically useful process that allows us to

addresses the bottlenecks associated with previous approaches for modeling complex,

creative tasks. Final-state data of completed creative outputs is abundantly available

online – from completed news and science articles, to videos, songs, manuals or any other

creative task. By more explicitly modeling the latent actions performed by humans while

achieving these end-states, we can start to collect voluminous data specific to our tasks and

explicitly model human processes. We will show how EL is fundamental cognitive learning

paradigm, allowing us to learn reward functions, goal states and symbolic systems in the

same manner as humans. Ultimately, EL can help us understand more about ourselves.

1.2.1 Emulation Learning in the Cognitive Sciences

Research in cognitive psychology offers a useful grounding for Emulation Learning (EL),

giving it cognitive basis and demonstrating how humans engage in similar processes.
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Psychologist David Woods, in 1988 [87], studied children learning how to perform tasks

with teachers. Some, he noticed, were directly imitating their teachers, or copying their

teachers’ actions/motor-movements. Others, he noticed, sought not to copy actions but to

emulate them. Emulation, he defined, was the learner’s study of the teacher’s goal states,

G; rewards, R; and, to a lesser-extent, actions a; and a synthesis of these that allows the

learner to not only reach the same goal-state g through novel action sequences â1, â2, ...ât

but even improve on g. Other researchers have solidified these insights and extended them.

Figure 1.3: Emulation Learn-
ing in cognitive studies. [88]
showed that children could em-
ulate based just on observing
the goal-state g of a completed
house (the children were shown
a picture of g, shown above).
They (1) performed latent ac-
tion inference and (2) learned a
reward function to more deeply
understand the building pro-
cess. They used these to build
bigger houses.

Observing that emulation involved learning from the

goal-state g of the teacher, researchers have progressively

tested how well learners could learn when shown less

and less action information, a1, a2, ...at. Lydia M. Hop-

per and colleagues, in 2008, [89] conducted a series of

“ghost” experiments, where the environment changed

without an agent performing observable actions – in their

experiments, a sliding door moved to reveal a reward

without any visible agent in the “ghost” condition. In

other words, the state transitions, s1, s2, ...st were visible,

but actions a1, a2, ...at were not. Learners, they observed,

inferred the actions necessary to achieve the reward.

Christine A. Caldwell and colleagues, in 2012, went

further, studying how children learned from end-state,

or goal-state demonstrations only. They showed children

images, shown in Figure 1.3, of completed house-like

stick-structures (i.e. the final states G of a creative process of house-building). This is a

complex creative task: there were no well-specified reward functions of what made “good”

or “bad” houses, nor were there any instructions about the kinds of actions (e.g. putting

tickets together with a marshmallow) that could yield intermediate states (e.g. a floor, a

8
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wall, or a foundation). However, they observed, children were able to not only imitate the

stick houses, but build taller, more stable and more intricate houses than the demonstrations.

They concluded that emulation is a cognitive process that involves the explicit decoding of

implicit actions, viable state-space transitions and rewards from end-state demonstrations. This

process should feel familiar to us all – we are often told by our supervisors: “if you want to

become a better scientist, read more articles” (in journalism school, a teacher3 explicitly told

me: “The best way to become a better journalist is to read more journalism.”). Within the context

of emulation learning, this means: (1) study the final-states of other’s creative processes.

(2) Infer the actions they took, even if they are only implicit, and understand why they took

them. (3) Understand how to recreate, combine and add to these actions to reach aligned,

or advanced goal states G. Indeed researchers in many fields have pointed to end-state

observation as crucial not only in learning but also the creation of cultural norms and the

advancement of creative cultures, in: toys [90, 91] and design [92, 93]; language [94], artistic

transmission [95, 96] and music [97, 98]; and in science [99, 100, 101] and journalism [102,

103, 104, 105, 106, 107].

I want to return now to and an earlier argument and give it a cognitive dimension: if EL is

simply the act of learning from end-state observation, is not pre-training, or self-supervised

learning (SSL), already achieving this objective? Researchers in cognitive science give us a

basis for rejecting pre-training as a form of EL, beyond the evidence given in Section 1.1.1

(i.e. how it has been shown to not reliably infer implicit actions or learn deeper, implicit

rewards). Numerous works have further clarified the distinction between end-state and tacit

knowledge [108, 109]. End-states often under-specify the skills needed to reproduce them

[108]: in many domains a degree of tacit knowledge must be acquired by a learner before

they can perform action inference. This tacit knowledge (relational, somatic, collective) must

be held by learners to process knowledge that artifacts contain but not immediately reveal.

Classic distinctions between knowing-that and knowing-how reinforce this point [110, 111,

3David Hadju, https://journalism.columbia.edu/faculty/david-hajdu

9

https://journalism.columbia.edu/faculty/david-hajdu
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112]; expertise research similarly indicate that enculturation and feedback are required to

move to contributory skill [113, 114, 115]. In other words, simply reading a book might help

us learn many things (e.g. language, ideas, and events) but, without any knowledge of the

craft of writing (or a powerful enough inverse model qθ(τ |g)), reading alone will not give us

the tools to emulate the writer.

1.2.2 Emulation Learning in NLP: Meaning Hierarchy, Action and Dis-

course

As discussed, emulation learning sits alongside learning methods introduced in Sections 1.1.1

and 1.1.2: imitation (i.e. learning to replicate observed action sequences a = a1, a2, . . .), and

reward-driven learning (i.e. prespecified constraints, rewards or directives, r, including
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Pragmatics Global, contextual language use —
how speech tailors to goals, norms.

Discourse Multi-phrase organization — how
sentences and sections link.

Semantics Meaning at phrasal level — how roles,
relations, and context resolves ambiguity.

Syntax Sentence structure — how lexemes com-
bine into phrases to form larger ideas.

Morphology Internal lexical structure — how form en-
codes grammatical categories (e.g. tense).

Phonology Sound patterns — how vocalizations form
literal and prosodic symbols.

Figure 1.4: In the hierarchy of linguistic meaning con-
struction, emulation sits in the intersection of Discourse
and Pragmatics.

search, or complete, open-ended

exploration towards goal-states

g)4. Now, let us explore how emu-

lation learning intersections, specif-

ically, with fields specific to lin-

guistics and NLP.

We will see, frequently, in this

thesis, a focus on textual discourse

and pragmatics analyses as the pri-

mary levels of linguistic emulation

learning. Let me first define dis-

course and pragmatics, and then I

will justify its use in emulation learning. Discourse and pragmatics are the studies of

4We will continue to see, in this thesis, how emulation learning draws from and contrasts with many
of these directions: we compare with emulation with distributional imitation [116] (i.e. pretrained LLMs)
(Sections 2.2.4, 2.3); we allow for search and exploration (Sections 3.4, 4.3; and we apply constraints and other
guidance (Sections 4.2, 4.4).
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structure and intentionality in communication; they study language use above the level of

the sentence and how phrases, sentences and paragraphs are joined to organize meaning

(Figure 1.4). Discourse and pragmatics have a long history in the computational study is

linguistics, which I will briefly discuss now. Discourse emerged, in the 1970s, to explain

local coherence between adjacent clauses and sentences [117, 118]. Penn Discourse Treebank

(PDTB) codified some of these observations: in PDTB, spans of text were annotated with

discourse connectives specifying how they related (e.g. temporal, comparison, etc.) [119,

120]. Rhetorical Structure Theory (RST), operationalized by the RST Treebank [121], sim-

ilarly modeled texts as hierarchical trees of elementary discourse units (EDUs) linked by

rhetorical relations (e.g. evidence, contrast, elaboration), but explicitly targeted paragraph-

and document-level organization [122]. The field’s center of gravity has since broadened

from structural analysis to meaning, context and intentionality, traditionally the domain of

pragmatics [123]. Segmented Discourse Representation Theory (SDRT) emerged in 2008 to

connect structure with interpretation [124]. Inspired by linguist Teun Van Dĳk [125, 126,

25], a number of computational works in the 2010s expanded discourse analysis into new

domains [127, 128, 129], including journalism [130]. These works inherit the strategies

of discourse analysis, which involve structural, categorical and relational analysis of text, and

more often then not they approximate pragmatic phenomena: they encode functional,

intention-bearing relations and document-level planning, even if most operationalizations

stop short of full speaker–hearer modeling, as is common in pragmatics research [123]. As

such, I will henceforth use discourse as a stand-in for discourse and pragmatics.

What is the purpose of discourse analysis in emulation learning? Writing-process and

discourse theory primarily treat discourse as the level of linguistic structure where the writer

is intentional and hierarchical [131, 132, 133, 134, 135, 136] while lower-level forms of meaning

(e.g. syntax, semantics, see Figure 1.4) are assembled incrementally: speakers’/writers’

local decisions are driven by immediate accessibility, priming, and information-theoretic

pressures [137, 138, 139, 140, 141, 142, 143, 144]. In other words, writers plan global
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communicative goals, allocate information, and manage attention before articulating

sentences; while writing the sentence they primarily generate. Thus, a text’s structure is the

level of analysis at which to search for the writer’s latent intentions and actions; if we wish

to emulate writers, then we would do well to perform discourse analysis. In more detail, a

standard discourse analysis approach involves the construction of a discourse schema, which is

a low-dimensional schema annotating categories d1, . . . dk ∈ D. Each category captures some

aspect of textual discourse structure for the specific structural or intentional phenomena

being studied. Then, a model is trained to label sentences for their discourse relations

[128, 145]. As we will see in Sections 3.2, 3.4, 4.1, 4.3 and 5.3, a discourse schema (e.g.

“Background”, “Claim”, “Counterargument”) can be easily written as an action vocabulary,

a1 . . . ak ∈ A (e.g. “Introduce Background”, “State Claim”, “Raise Counterargument”) and

a discourse model can be the inverse model qθ(τ |g): in other words, focusing on the structure

of g can help us infer actions a and plans [146]. It is fair to again ask whether imitation,

or next-word prediction (i.e. distributional imitation ??) can model these intentions and

actions. Next-word prediction (Section 1.1.1) trains base models [147] to imitate human

language with high fidelity, reliably capturing phonology-to-semantics regularities [148]

(Figure 1.4). Imitation can also implicitly capture some discourse regularities — indeed,

humans sometimes show “over-imitation” of surface actions, unintentionally capturing

higher-level actions [149] — but does not specifically capture plans [150, 76]. We draw a

distinction: token-level imitation resembles fast, automatic processing [151, 152, 153, 154];

discourse-level planning resembles deliberate control [155, 156]). Our claim is not that

imitation fails — indeed, imitating behavior is an important part of human-social learning

[157, 158, 159, 160] — but explicitly modeling discourse-level actions better matches how

writers plan and improves hierarchical control and transfer.
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Figure 1.5: Overview of related methods: Comparing existing methods (i.e.
Policy Learning , Goal-Conditioned learning methods, Probabilistic and Transport -based in-
ference methods.) with emulation learning.

1.2.3 Comparison between EL and Other Methods in AI

Emulation Learning, as we just discussed, has been broadly studied in the cognitive sciences,

art and philosophy. Why has it not yet been formalized, as a learning paradigm, in computational

sciences? EL indeed shares similarities with and is inspired by a number of several

paradigms in control, planning, and probabilistic modeling, in addition to those already

discussed (i.e. self-supervised pre-training; and reward or supervision-based post-training).

I will go through other related areas of artificial intelligence now, and then hypothesize

why EL has not yet been formalized.

1.2.3.1 Policy-Learning: demonstration-driven learning and behavioral inference

EL is closest to methods that infer policies, rewards, and intentions from demonstrations.

Apprenticeship, first proposed by Peter Abbeel and Andrew Ng in 2004 [161] formalizes

a two-stage pipeline: (1) learn a reward function via inverse reinforcement learning
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(introduced by Ng et al in 2000 [162]), then (2) optimize a policy under that reward [162,

161, 181]. Similarly to our framework, apprenticeship assumes that true reward functions

are complex and cannot be prespecified; only by first learning them from actions can more

nuanced policy functions be learned. Apprenticeship has thus far been mainly applied to

more classical tasks in control, like robot movement [2] – EL is explicitly concerned with

subjective, creative tasks, where reward functions are likely even more nuanced.

A more fundamental difference between EL and apprenticeship is that apprenticeship

assumes that full action-state trajectories are fully observable/accessible. EL targets

domains where only finished creative artifacts (goal states) are observed and puts special

emphasis on the latent action/trajectory inference process, qθ(τ |x), that must occur before

policy learning. In this way, EL relates to imitation-from-observation (IfO) problems, which

assume that actions are unobserved and instead infer policies from state-only (often video)

demonstrations [163, 164, 182, 183]. EL, our framework, goes beyond IfO in that we assume

even less visibility into state-space transitions – we assume only the goal-state g is visible

and thus need more robust inverse model, unlike IfO which typically assumes full state

sequences. In EL, trajectory inference can be inferred (e.g., via inverse dynamics or structured

latent variables) to enable either (i) implicit behavior cloning from inferred trajectories

or (ii) reward inference followed by RL, thereby unifying IfO-style action inference with

apprenticeship/IRL-style reward inference. Finally, EL is also related to plan and intent

recognition, which infer likely goals or plans from partial observations [165, 166]. EL

generalizes this spirit to creative domains with goal-only evidence and pushes beyond

recognition: the inferred latent trajectories and/or rewards are subsequently used to train a

policy for generation.

1.2.3.2 Goal-States as Supervision, Symbolic Reasoning and Goal Distributions

Several families of methods make deliberate use of goal states, or endpoint-constraints,

to enhance learning. Concretely, given a set of desirable end states G ⊆ S (e.g., finished
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creative works), these approaches either (i) condition policies on desired goals (ii) reason

symbolically from goals back to preconditions, (iii) construct flows that connect an initial

distribution to p(g) under transport principles. Emulation Learning (EL) is adjacent to all

three, in that it also learns from goal-states, but is distinct in that it uses these states to infer

latent processes (trajectories and/or rewards) with the explicit aim of policy learning.

The goal-conditioned methods most related to the previous section on policy-learning are

goal-conditioned RL (GCRL) methods, which (1) aims to learn policies over action sequences

(2) explicitly incorporate information about goal statesin their learning process. GCRL

parameterizes policies and value functions with an explicit goal, g as input. Formally, with

a goal space G ⊆ S and goal distribution p(g), GCRL learns πθ(a | s, g) (and optionally

Qθ(s, a, g)) when rg is sparse (i.e., rg(s, a) = 1 [s ≈ g]). Researchers have explored using

universal value function approximators to share structure across goals [167]; Hindsight

Experience Replay improves sample-efficiency by relabeling goals with achieved outcomes

in off-policy data [168]. EL is complementary: rather than interacting to learn πθ(· | s, g),

EL derives a goal-conditioned policy from goal-only observations by first inferring latent

trajectories and/or a reward model that render the observed endpoints likely, then

optimizing a policy consistent with those inferences. An interesting related method, G

enerative Flow Networks (GNets) aims to learn stochastic construction policies that assemble a

composite goal state – a state built incrementally by composing primitives (e.g., molecular

graphs, program trees) – through a sequence of steps through partial states [169]. (We

will study compositeness in Chapters 3 and 4, most directly in Sections 3.2.3, 3.4, 3.6

and 4.1.) Endpoint supervision in GNets enters via a scalar terminal reward R(g) on a

finished goal-state g; the target is to learn a policy whose terminal distribution satisfies

Pπ(g) ∝ R(g). Training enforces flow-matching constraints or uses the Trajectory Balance

loss [170], LTB(τ) =
(
logPF (τ)− logPB(τ)− logR(g)

)2 where τ terminates at g, and PF , PB

are forward/backward path probabilities. EL is similar in treating finished objects as

informative endpoints, but it does not assume an externally provided R(g); instead, it (a)
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infers plausible trajectories from endpoints and then (b) either clones a policy from those

trajectories or learns a reward model consistent with the observed goals.

Symbolic goal-based reasoning methods also aim to reach composite goal-states, but do so

with a more classical approach. This class of methods includes means–ends analysis [171]

and regression planning [172]. Both methods reason backward from a goal g ∈ G to subgoals

by applying inverse operators under a known transition model and typically in a closed-set

search space; generic backtracking and heuristic search [184, 185] supply the algorithmic

mechanisms that traverse the state space, prune branches, and guide expansion using

heuristics. While such methods can reduce search and produce efficient plans when an

explicit state transition model is known, EL replaces explicit backward symbolic search with

statistical inference over latent trajectories and then amortizes the result into a parametric

policy usable without test-time search. Finally, optimal transport (OT)-based methods

generalize the focus on goal-states to goal distributions: OT constructs “flows” between

starting and goal distributions. Static OT finds a coupling π ∈ Π(µ0, µT ) minimizing∫
c(x, y) dπ(x, y) between an initial distribution µ0 and a target (goal) distribution µT for

a cost c [173]. In dynamic form, one minimizes a kinetic-energy functional subject to

the continuity equation that transports µ0 to µT [173]. A related method, Schrödinger

bridges (SB), solves an entropy-regularized analogue: among path measures P on trajectories

that match fixed marginals (µ0, µT ), choose the one minimizing KL(P ∥P0) relative to a

reference diffusion P0 (e.g., Brownian motion), yielding the most likely bridge consistent

with endpoints [174]. Thus, “transport or entropy-regularization objectives” refer to,

respectively, minimizing transport cost (OT) or minimizing pathwise relative entropy (SB)

under endpoint constraints. EL differs in aim: it uses endpoints to infer latent decision

variables (trajectories, rewards) that generated them in a creative MDP, and then learns a

policy, rather than merely constructing a minimal-cost or most-likely flow between fixed

marginals. Nonetheless, OT/SB can serve as priors or regularizers over the family of latent

trajectories considered by EL.
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1.2.3.3 Latent-variable probabilistic modeling and program synthesis

Probabilistic inference has, personally, been hugely inspirational to how I look at the world:

my earliest research experiences have been working on probabilistic graphical models

(PGMs) with Dr. David Blei at the New York Times [186, 187, 188]. The starting-point for each

PGM is the “generative story”: a story that describes how observed data “came to be”. This

directly inspires EL’s focus on inferring latent actions that “generate” observed goal-states

g. Although many learning approaches for probabilistic models (e.g. EM [189], VAEs

[175, 190], VI [176] and HMMs [191, 192]) typically perform backwards (observed→ latent

variable) and forwards (latent→ observed variable) passes over the same architectures (i.e.

that make the same probabilistic assumptions), wake–sleep style amortized inference [193]

separates backwards architectures from forward (which they call recognizer and generator

models). EL follows this structure, as our inverse model qθ(τ |g) for inferring latent actions

needs not be connected with other parts of the EL process.

This family of methods parameterize the posterior over process variables (actions,

intermediate states) conditioned on goals. Control-as-inference reformulations view RL,

too, as probabilistic inference under maximum-entropy/soft-optimality criteria [194, 195,

196, 180, 179]. EL is aligned with this perspective but differs in emphasis from most

PGM’s goals: EL’s policy learning objective uses these posteriors to supervise or to define

control-as-inference surrogates and treats control variables (actions, rewards) as latent causes

of observed creative outcomes and uses inference over those causes to learn the policy itself.

Related to PGMs, energy- and score-based generative models also define endpoint densities

without trajectories. Energy-based models posit pθ(g) ∝ exp(−Eθ(g)) for finished objects g

and are typically trained by estimating the gradient of log pθ via contrastive or likelihood-

gradient methods and sampling with MCMC [177, 197]. Score-based models instead

learn the score ∇g log p(g) by denoising-score matching across a noise (or diffusion/SDE)

schedule and then sample with Langevin dynamics or reverse-time SDE solvers [178].

In both cases, supervision is entirely endpoint-level: the learner fits a distribution over
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Recap: Emulation Learning

Introduced in Section 1.2, Emulation Learning (EL) is a novel computational learning
approach introduced in this thesis for learning complex, creative workflows where
limited data or reward functions exist. EL studies goal-states g resulting from human
state-action trajectories τ ∗ = (a∗1, s

∗
1), (a

∗
2, s

∗
2), . . .. EL infers these trajectories, τ̃ , via an

inverse model qθ(τ |g), then learns a policy model, π̂(τ |x) from starting-state x, via
direct supervision from τ̃ or after inferring a reward function R.

completed works g without explicit actions. EL can borrow these parameterizations (e.g.,

as priors over goals or as components of trajectory posteriors), but its optimization target is

a control policy π(a | s) that maps states/contexts to actions; endpoint modeling is thus a

means, not the end.

Program synthesis illustrates an even more explicit “process-as-latent-structure” view,

where observed solutions are explained by discrete programs that compose primitives;

wake–sleep style library learning amortizes search [198, 199]. EL is analogous in that it

posits discrete/structured creative workflows as latent generators of finished works, but its

endpoint is a reactive policy rather than an explicit executable program. Finally, diffusion-

based planners and offline decision-making methods (e.g., Diffuser and Decision Diffuser)

explicitly model trajectory distributions and then condition/guidance-sample plans that

satisfy goals [200, 201]. EL can incorporate such trajectory models as flexible priors for its

latent-action inference step; the distinctive ingredient remains the use of completed works as

observational evidence to infer policies (with or without explicit reward modeling).

1.2.3.4 Summary

Across these literatures, emulation learning is positioned: (i) like Imitation from Observation

(IfO) and Inverse RL (IRL), EL is inverse in nature and seeks to understand human behaviors,

but it assumes more limited observability into human processes (EL assumes goal-states

g are observable); (ii) like goal-conditioned RL and other goal-supervised methods, EL

operationalizes goals, but EL aligns action sequences to human behaviors rather than allowing
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open-ended discovery of any action trajectory; and (iii) like latent-variable/Bayesian

approaches, EL frames creative processes as latent structures to be inferred, yet EL goes

further by using those inferences to learn deployable policies.

A question remains: if EL is so fundamental in the cognitive sciences and practically

useful in modeling human tasks, why has it not yet been formalized so far as a task in

machine learning? My strongest assumption is that we simply did not have effective inverse

models qθ(τ |g) for inferring latent actions from goal states. Prior to the current age, inverse

models had to be carefully constructed [202] through curated datasets. While this is still a

large area of research, pretrained language models are finally demonstrating promise as

inverse models. I expect that the coming years of research will enable much more powerful

approaches to emulation learning.

1.3 Outline of This Thesis: Emulating 4 Steps in Computa-

tional Journalism

Journalism is the creative domain that will be our primarily focus in this thesis, specifically,

computational journalism (i.e. the application of computational techniques to routines and

workflows in newsrooms [204, 205]). Each task that we discuss will have the purpose of

further exploring core questions in Emulation Learning.

The main body of this thesis will progress in 4 Chapters, each introducing one task in a

journalistic workflow, shown in Figure 1.7. They are organized around the steps of the

journalistic pipeline — or, the professionalized process by a news event is found, produced

and published [206]. The four steps are shown along the top of Figure 1.6: (a) story finding,

the process by which events become news, (b) source-finding, the process by which sources

are found and added to a news article, (c) story structuring, the process by which facts

are organized into a cohesive story and (d) news editing, the process by which factual and

stylistic changes are made and event updates are incorporated. I describe each part in turn.
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Figure 1.6: Overview of the main body of this thesis. I outline the goals of each chapter. In
terms of emulation learning: Chapter 2, we construct the inverse function, qθ(a|g); Chapter 3,
we explore ways to learn the policy function, π(τ |x); Chapter 4, we turn to learning the state
transition function, P (st+1|st, at); Chapter 5, we increase observability into the state-space
(i.e. “ghost conditions” [203]). Motivating tasks shown at bottom and Figure 1.7.

1.3.1 News Finding — An Observability Challenge for Emulation Learn-

ing’s Inverse Model qθ(a|x)

In Chapter 2, The Observability Challenge in Emulation Learning, I will focus on the first

step in producing news – finding a story, or event, to write about. When is an event newsworthy?

Which information is prioritized? I introduce newsworthiness prediction, the task of learning

a policy π(a | x) where x is an event5 and a is a score indicating its likelihood of coverage.

As a practical task, consider a newsworthiness recommendation engine that recommends

potentially newsworthy events to a journalist — this could help journalists navigate today’s

information overload, saving time and surfacing more stories.

To emulate newsworthiness, we will train π(a|x) on previous newsworthiness judgments:

we fit an inverse model qθ(a | g) that infers latent editorial actions a from observed artifacts

g, yielding pseudo-judgments (ã, x̃). We face two observability challenges. In Section 2.2, g

5For example, a policy that a city council is trying to pass, the outcome of a political race, a mention of
two snow leopards being donated by Saudia Arabia in a White House fact sheet
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are news articles and the action space is a ∈ {0, 1}, where a = 1 means an event x should

be covered and a = 0 means it should not. Because g exists only for covered events (a = 1),

our data lie on a restricted support: supp(x) s.t. ∃ g ⊊ supp(x). Estimating πϕ(a | x) from

(x, g) pairs alone, thus, would not reveal how journalists would judge uncovered events.

In Section 2.3.3, we expand beyond this binary view of a. Even among covered events,

some are judged more newsworthy than others: a is ordered and potentially continuous

a ∈ R based on intrinsic and extrinsic factors (e.g. world context C). Here we study news

homepages as g, which give us richer information about C and relative newsworthiness

of events x, x′. To address both challenges, we introduce observation channels {σ}, each

extracting observations yσ = fσ(g). Assuming channel-specific emission models Cσ(yσ | a),

we show different ways of constructing the inverse model qθ(a | g) through auxiliary steps.

1.3.2 Source Finding – Trajectory Planning for Emulation Learning’s

Policy Model π(a|x)

In Chapter 3, Learning Action Trajectories via Emulation Learning, I examine the next step

in covering the news: finding sources to confirm, broaden, and contextualize a news event.

What roles do different sources play, and how do they complement one another? Can we

retrieve the right sources for a story? I formalize a new task, source-finding, as learning a

policy π(τ | x), where τ =
〈
(a1, s1), (a2, s2), . . .

〉
is a trajectory of actions at and intermediate

states st. at is a Get Source action, and st denotes the set of sources retrieved at time t.

To emulate source-finding, we first train qθ(τ |g) from labeled (τ, g), where g is news

articles. We assume fewer observability challenges than in Chapter 2. Our core challenge

is to reason about longer action sequences a = a1, a2, . . .. In Section 3.2 we probe whether a

is compositional, a prerequisite for modeling it effectively. Section 3.3 explores whether

explicitly training π(τ | x) is necessary or whether large language models’ implicit policies

π(llm)(τ | x) suffice. In Section 3.4, we observe that sources fulfill specific discourse

roles, d ∼ d(at); d ∈ D, within a narrative and propose a hierarchical planner–executor:
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Figure 1.7: The Story Production Pipeline: the process by which journalists: (1) find
leads to write about (News-finding, Chapter 2), (2) find sources to confirm, broaden and
narrate their stories (Source-finding, Chapter 3), (3) structure and produce their stories
(Story-structuring, Chapter 4) and (4) edit/update their stories (Story-editing, Chapter 5).
States are shown in rectangles, actions are shown atop arrows. Illustrates the iterative nature
of story production, showing how article versions are generated during each reporting cycle.
In Chapter 5, we will use these article versions to obtain intermediate states.

π(at | x, st) = πe(at | d(at)) πp(d(at) | x, st), where πp chooses discourse roles and πe selects

sources based on them. This raises questions about choosing an appropriate schema D (we

address in Section 3.5). Finally, we take steps toward reward-based preference learning by

creating a virtual interviewer sandbox (Section 3.6).

1.3.3 Story-Structuring – State Realization for Emulation Learning’s

Transition Model P (st+1|at, st)

In Chapter 4, State-Space Realization in Emulation Learning, I will introduce the last step

in producing stories: writing the story. How do all collected facts fit together cohesively,

and tell a story that is well-structured (e.g. inverse pyramid [207])? I introduce structured

generation, where a = a1, a2, . . . are a sequence of structural markers (e.g. an outline, or

discourse labels: “Write Background”, “Introduce anecdote”) and s = s1, s2, . . ., g = sn is

the realization of those markers (i.e. the current draft and surface-form text corresponding

to each action).
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1.3 Outline of This Thesis: Emulating 4 Steps in Computational Journalism

Our primary focus in this Chapter will be not, as in Chapters 2 and 3 on selecting a

via the policy model, π(τ |x), but instead on how a gets realized into the state-space, s. In

emulation learning, this is known as learning the state transition model P (st+1|st, at). ŝ will be

evaluated by how much it looks human, i.e. how well text we generate is structured like

g∗, an ideal human article. In doing so, we will confront control challenges. I introduce

methods in Sections 4.2 and 4.3, where discourse is again used as a measure of structure

and, as per our state-action definitions, illuminates actions. I will show how we can use the

inverse model qθ(a|g) to steer generation to be more structured. Section 4.4 will ask: how

can we explore more generalized realization mechanisms. These again raise questions about

the “rightness” of latent outlines, in Section 4.5 we will probe this question by exploring

how much correlation exists between discourse schemes. Finally, in Section 4.6, we will

explore how structural awareness can play a role in information comprehension.

1.3.4 Story Editing – Increased State-Space Observability

In Chapter 5, State-Space Observability in Emulation Learning, I introduce a task that

occurs throughout the news production process: story editing. An edit is any action a

writer makes during the writing process. Edits reflect fact and event updates; struc-

ture changes, as a news article progresses from an immediate news alert to a fully-

fledged article; and stylistic changes. In story editing, we examine trajectories τ =

(a1,1, s1,1), (a1,2, s1,2) . . . , (a2,1, s2,1), (a2,2, s2,2) . . . where each aij is a single update action (i.e.

any action made during the writing process, including actions studied in Chapters 3 and 4)

and each sij is an edited state of an article. Crucially, when examining edit τ , we have greater

observability into the state space. We introduce novel revision histories datasets for news,

which give us observability into starting-states s1,1, s2,1, s3,1, . . . for each subsequence in τ .

Our focus this Chapter is exploring how this greater observability can be used to

probe temporality in action sequences and improve emulation overall. If s1,1, s2,1, s3,1, . . ..

is observed, then we can impose partial ordering on actions a1,1, a1,2 . . . < a2,1, a2,2 . . .
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1.3 Outline of This Thesis: Emulating 4 Steps in Computational Journalism

occuring between revisions. In Section 5.2, we present our revisions-histories datasedt,

NewsEdits, and show how atomic state-space changes can be deduced and predicted. In

Section 5.3, we build inverse models qθ(a|si,t, si,t+1) to help us infer actions in sequences. I

anticipate this work in edits opens a crucial door into using revision histories for behavioral

sequence data, thus opening a new door in emulation and leading to more precise tooling,

interventions and behavioral understandings.
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Chapter 2

The Observability Challenge in Emulation

Learning

2.1 Newsworthiness Prediction: A Study in How Informa-

tion is Prioritized

Journalists make decisions on whether or not to write stories about events based on qualita-

tive, case-by-case assessments of whether the event meets criteria for being noteworthy,

interesting and relevant enough to cover [23]. Collectively, these criteria are called “news

values” – they are poorly defined and hard to articulate norms, making them a challenging

task to study with traditional machine learning methods; yet journalists share broad

agreement on what they are, indicating that they are a learnable task [24].

Figure 2.1: In the journalism pipeline outlined in Section 1.3, we focus now on the first step:
newsworthiness prediction, or predicting the news value of events in order to discover stories
to write about. This task requires us to learn a policy model π̂(a|x), which gives a score
indicating whether event x should be written about. Newsworthiness prediction requires
us to learn to capture complex human judgments about events and their salience.
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2.1 Newsworthiness Prediction: A Study in How Information is Prioritized

We will focus on this process, news-finding, in this Chapter. The practical goal we will

center around is a new task, newsworthiness prediction, that seeks to predict whether a

story should get covered. Imagine a tool that would function as a recommendation engine,

surfacing story ideas (e.g. a recent city council policy, an interesting line in a press release)

to journalists. This system will need to understand the intrinsic newsworthiness factors

journalists look for in events (e.g. per Galtung [23]: “relevance to a community”, “involves

persons of interest”) as well as the extrinsic factors in their environment (e.g. “major

international event occurred earlier today”). Despite much qualitative analysis of the factors

s1 s2 s3 g

a1 a2 a3

Assess
Newsworthiness

...Intermediate
Actions...

Event
...Intermediate

States...
News

artifact

Figure 2.2: Observability of the
newsworthiness-prediction task: We as-
sume that the first action, a1 assess
the newsworthiness of s0 =“Event”.
Only artifacts related to the news ar-
ticle (i.e. the article itself, Sec. 2.2,
or it’s placement on the Homepage,
Sec. 2.3), g, are observable.

informing newsworthiness [23, 208] has found that

many very little quantitative work has attempted

to analyze: (1) what stories get covered, (2) why

have they been covered? Not only could such work

increase our understanding of coverage patterns

and informational salience perceptions [209], but it

could empower newsrooms to discover more stories

[210]. This task will introduce us to some of the core

concepts and challenges in emulation learning. Let

us formalize this now.

Newsworthiness Prediction as Emulation Learning: The

goal of newsworthiness prediction is to learn a policy

model π(a|x), that will take, as input, an event s1 or

x (more specifically, a textual description of the event) and assigns a newsworthiness judgment,

a1, to the event. The higher a1 is, the more newsworthy that event and, as shown in Figure

2.2, the more likely we are to perform further actions τ to write the story (explored in later

Chapters). These progress us towards the goal state, g, which is some observable news

artifact: either the article itself (Section 2.2 or it’s placement on the homepage (Section

2.3). The newsworthiness task gives us an excellent starting point to outline some concepts

26



2.1 Newsworthiness Prediction: A Study in How Information is Prioritized

Cheat-Sheet: Emulation Learning for News-Finding

From finished articles and homepages, we infer both which events have and have not been covered, as
well as their relative importance.

a at (action) — one-hop decision to consider the newsworthiness of a story idea, x. a ∈ {0, 1} for
cover vs. not (§2.2) and a continuous utility for (§2.3.1).

s s0 (state) — initial state s0 = (x, c) with c the extrinsic context (captured explicitly by competitor
set C on homepages) (§2.2, §2.3.1).

x x (starting context) — Input/event, or the candidate lead to be evaluated as newsworthy or not
(primarily SFBOS policy proposals). (§2.2.2, §2.2, §2.3).

g g (goal state) — The published news article (§2.2) or the homepage (§2.3.1).
q qθ(a|g) (inverse model) — Recovers latent newsworthiness decisions from observables: qθ(a | x, g)

via the linking channelMψ(x, g) (§2.2, §2.2.3) and qθ(a | x,C, g) via pairwise preferences po(x > x′)

(§2.3.1, §2.3.3.1).
π π̂(a | x) (policy model) — predicts coverage for new events or ranks articles by relative

prominence given contemporaneous competitors C (i.e. π̂(a | x,C)). (§2.2.4, §2.3.1, §2.3.4).

in emulation learning more concretely. Newsworthiness prediction is in some ways an

easy task to emulate and in some ways a challenging task. It is easy because, as shown in

Figure 5.3, typically only a single action, a1, is needed to assess an event’s newsworthiness.1

So, it allows us to explore emulation learning without necessarily considering long action

trajectories a2, a3, . . . (e.g. as in Section 3). However, inferring newsworthiness poses a

significant observability challenge. Simply collecting easily accessible newsworthiness

signals from observed artifacts g will give us too much positive, intrinsic signal, and not

give us enough information to learn a robust policy model π(a|x) that (1) covers a wide

space of non-newsworthy events x and (2) considers extrinsic confounders. In other words,

many events “look” newsworthy: determining events journalists should cover also requires

determining events they should not cover. The core emulation focus in this Chapter will be

to explore the observability of the newsworthiness spectrum. I will introduce two ways of

calculating the inverse function, qθ(τ |a).

1For many stories, the decision-making process can often be instantaneous – many events, to experienced
journalists, are clearly newsworthy. Conversely, for some stories, more actions need to be performed to assess
the newsworthiness of an event (e.g. to verify information, or “dive deeper” to understand “if there is a story
there”). We will not consider these cases in this Chapter.
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2.1 Newsworthiness Prediction: A Study in How Information is Prioritized

Chapter 2 Overview

In Chapter 2, The Observability Challenge in Emulation Learning, we will approach a

core challenge in emulation learning: how can we train policy models π̂(a|x) that are

(1) sufficiently generalized across a broad space of newsworthy and non-newsworthy

events, x and (2) responsive to extrinsic confounders (e.g. fluctuations in daily news

volumes)? Relying solely on inferences from an inverse function qθ(τ |g) that considers

one artifact, g, at a time, we will see, is not sufficient to overcome these challenges.

This section will unfold as follows. First, in Section 2.2, we address the first challenge,

ensuring π̂(a|x) is robust across newsworthy and non-newsworthy events. We simplify

a to be binary: a = 1 means to cover this event, and a = 0 means do not cover. When

a∗1 = 0, we see, no artifact g results; so, we introduce a linking function Mψ(x, g),

described in Section 2.2.3, that labels ã1 = 0 when Mψ(x, g) ∀ g ∈ G. This allows us

to train a more robust policy model π̂(a|x) Then, in Section 2.3.1, we will address

the second challenge, ensuring π̂(a|x) considers the presence of extrinsic factors. We

expand a to be a real-valued variable; the higher a is, the more likely we are to cover

x. We introduce a pairwise function po(x > x′) to compare pairs of inputs and judge

which one is more newsworthy, allowing us to rank inputs across a wide spectrum.

Works Discussed:
▷ Spangher et al. (2024)“. Tracking the Newsworthiness of Public Documents”. Proceedings of the 62nd Annual Meeting of the

Association for Computational Linguistics (Volume 1: Long Papers).

▷ Spangher et al. (2025)“. NewsHomepages: Homepage Layouts Capture Information Prioritization Decisions”. Proceedings

of the 2025 Conference on Empirical Methods in Natural Language Processing.
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2.2 To Cover an Event or Not to Cover an Event?

2.2 To Cover an Event or Not to Cover an Event?

We start with the simplest case of newsworthiness prediction: whether an event x should or

should not be written about in a news article. This allows us to simplify newsworthiness

into a binary classification problem: our newsworthiness policy model π(a|x) becomes

p(a|x), where a = 1 if x is written about and a = 0 otherwise. This setup is clearly limited –

not all articles are equally important: some have outside effects while others are simply

routine coverage. We will revisit this simplifying assumption in Section 2.3. Now, though,

we explore this simplified problem and how EL can be useful.

2.2.1 Linking Function Mψ Gives Observability

As outlined previously, we frame newsworthiness prediction as a minimal, horizon-1 instance

of EL. We start with an MDPM = (S,A, P, r, γ). Each episode begins at state s0 = (x, c),

where x is a textual description of event x (e.g. “city council passes policy” or “Saudi

Arabia donates leopards”) and c is factors external to the event x (e.g. the context of the

newsroom, other news that is being covered, prior events related to x). Here, we assume c

is constant. The action set is binary: a = 1 means cover the event; a = 0 means ignore. The

episode terminates after a single decision and transitions are deterministic: taking a = 1

produces a finished creative work g (a published article) in the goal set G, whereas taking

a = 0 yields a null terminal ∅ (no article). The reward r∗(x) is an unknown newsworthiness

utility and the expert’s latent policy π∗ maps events to coverage probabilities. Thus, in this

one-step EL formulation, a trajectory is simply τ = (x, a, c)2. The primary applicability of EL

here results from limited observability: we do not see trajectories or rewards, only a collection

of events X and a collection of goal states g ∈ G ∪ {∅}.

To calculate our inverse function qθ(τ |g) here we learn linking (alignment) model,Mψ(x, g),

2While it might seem pedantic to use the language of trajectories and policies for a horizon-1 task, we aim
to maintain consistency with upcoming sections.
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2.2 To Cover an Event or Not to Cover an Event?

between x and g. Mψ(x, g) = 1 indicates that g covers event x (i.e. a = 1, the positive

case). Mψ(x, g) = 0 over all g ∈ G indicates x was not covered by any article (i.e. a = 0, the

negative case). We treat the mapping from latent action to observed goal as an observation

channel: even if a = 1, a discoverable article may fail to appear in our corpus with some

small probability (e.g. archives and web-crawls are imperfect). It is therefore useful to

think of the channel’s recall R(x), the probability that a true coverage decision for event

x yields a detectable article in the data. The higher the recall R(x), the stronger the

evidence that non-detection reflects a true non-coverage decision rather than a missed

article. It is also useful to think of the linking model as generating a posterior over the a,

given x (and external factors, c, assumed constant). When an article is detected for x, the

posterior tilts towards a = 1; when no article is detected for x, the posterior tilts toward

a = 0; ensuring that both observed coverage and the lack thereof enter coherently into EL’s

inverse step. Here we choose to learn a policy π̂(a | x) explains these inferred actions3.

Mandelman Ordinance amending the
Planning Code to increase density on
lots with auto-oriented uses...

Policy Document, x

After 14 months of delays, the Board
of Supervisors on Tuesday
unanimously passed Mayor Breed’s
legislation that makes it easier to turn
gas stations, parking lots and other
auto-related properties into housing.
This caused widespread debate....

News Article, g

Figure 2.3: A policy item, x, in pur-
ple, is covered by a news article, g,
in yellow. Mψ(x, g) = 1; the policy
is covered by the news article.

The immediate aim of inferring actions here is pre-

cisely to learn this simple policy model for a new

event x—a newsworthiness estimator that general-

izes beyond the observed corpus.

2.2.2 Local News Coverage: San Fran-

cisco Board of Supervisors

To restrict our area of focus, we restrict ourselves to

the following scenario: a local journalist is covering

their local city council. The universe of events, x,

are policies published by the city council. This is shown in Figure 2.3. We focus on a

specific local government, the San Francisco Board of Supervisers (SFBOS), and a specific

3We will see that fitting a binary predictor p(y=1 | x) by cross-entropy coincides with maximum-likelihood
estimation in this one-step MaxEnt-IRL view: the predictor’s log-odds act as an affine proxy for a reward
function r̂(x), and applying a monotone link yields the policy π̂.
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newspaper, the San Francisco Chronicle (SFChron), that has a robust local news section. We

start by gathering HTML of all SFChron articles published between 2013–2023 and via the

Common Crawl4. We parse article text5 and deduplicate based on text, and ultimately are

left with a set of 202,644 SFChron articles6. We also scrape the public meeting calendar on

the SFBOS website7 to collect all SFBOS meetings between 2013-20238 and then collect the

proposal text for 13,089 SFBOS policy proposals9 that were discussed a total of 27,371 times

in 410 public meetings. Each policy is, on average, discussed in 3 separate SFBOS meetings.

2.2.3 Probabilistic Relational Models: A General Linking Function

A naive approach to applying EL to newsworthiness would be to construct a inverse

function qθ(τ |g) based on what is most observable: published articles, or goal states, g ∈ G.

We might collect articles, g, and seek to extract details about the event x in the article.

However, such an approach fails for two reasons: (1) the representation of the event, x in g,

is biased based on how it was portrayed in the article. This is not insurmountable — as we

will see in other sections, we can make inferences to correct these biases. However, more

importantly, (2) this only gives us information about positive newsworthiness, or the events that

did get covered (i.e. π(a = 1|x)), not those that did not (i.e. π(a = 0|x)).

A core challenge in training policy models π(a|x) (recall, a is a binary action-set where

a = 1 means that x is covered and a = 0 means that x is not) is that π(a = 1|x) is often

not enough to learn robust policies [213, 214, 215]. We address by first learning Mψ, a

linking function that helps us infer not only what policies were covered, but also what

policies were not. Without Mψ, our models will lack information about the universe of

4We search for all URLs matching wildcard pattern https://www.sfchronicle.com/*
5Using https://github.com/codelucas/newspaper.
6We release the full list of URLs https://github.com/alex2awesome/newsworthiness-public and ex-

tended data collection here https://github.com/alex2awesome/explainable-controllable-newsworthine
ss, as well as scripts to replicate our collection process.

7https://sfgov.legistar.com/Calendar.aspx
8Example meeting: https://sfgov.legistar.com/MeetingDetail.aspx?ID=1108038&GUID=8B3A2668-90A

9-43E9-A694-8747176617F4
9Example of a policy proposal: https://sfgov.legistar.com/LegislationDetail.aspx?ID=6251774&GU

ID=420031B2-94DE-440F-AB74-25FF091F2D61
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SFBOS Policy
Proposals

SFChron
articles...

...more likely
covering
SFBOS...

...more likely
covering

votes/policy...
...

p(l|g, x) =
∑
h3

∑
h2

. . . p(l | g, x, h2, . . .) p(h2 | g, x, h1, . . .) p(h1 | g, x . . .) . . .

Figure 2.4: Our probabilistic relational modeling (PRM) process for whether an article g
covers a city council proposal, x, i.e. are linked, l. PRM works by introducing auxiliary
marginal variables h1, ...hn that refine the link model, p(l|g, x) through conditioning. In the
diagram, moving from right-to-left, each step shows another variable hi being applied in
the PRM-chain: e.g. h2 =“covering SFBOS”, h3 =“covering SFBOS votes and policy”. h2, h3,
etc. can be learned separately, and we learn supervised models for each step.

policies that seem newsworthy, on the surface, but were not covered by journalists for,

likely, important reasons. Determining that a policy10 was covered in media, as shown

in Figure 2.3, is a challenging task. Unlike related tasks, like citation prediction [216] or

cross document event-coreference [217], determining policy coverage requires us to establish

links between documents in two different linguistic domains, with no pre-existing labels.

Our first challenge is to establish when a news article references a specific local policy

document, i.e. to link them, allowing us to make inferences about policies that were covered

and policies that were not.

We discover that, despite lacking a labeled dataset of policies labeled as covered or not,

we can nevertheless learnMψ(x, g) by breaking this problem down into a chain of decisions,

each simple enough that a language model can make a reliable inferences. Eventually

these inferences, when conditioned on the previous ones11, give us high confidence that a

coverage link does exist. This is an application of probabilistic relational modeling (PRM)

[218] that, we show, helps us outperform other retrieval-based baselines.

More formally, we seek to model the likelihood a link l exists between an article, g, and

10A local government policy item is a motion of gov.: a proposal, bill, amendment, settlement, law, etc.
11Shown in Figure 2.4, i.e. “article covers local politics”→ “article covers city council meetings”→ “covers

past meeting”→ “covers this past meeting”
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PRM-Chain TF-IDF SBERT OpenAI Embeddings
p(l|a, p), base 16.0 32.1 30.3∑

h1
p(l|g, x, h1)p(h1|g, x) 28.5 33.9 37.5∑

h1,h2
p(l|g, x, h1, h2)p(h2|h1, g, x)... 55.3 48.2 53.5∑

h1,h2,h3
p(l|g, x, h1, h2, h3)p(h3|h1, h2, g, x)... 68.2 55.6 62.6

Table 2.1: Results from training PRM chains, using different sentence embeddings to
calculate l. l is defined as a mapping between News article a ↔ Policy mapping p.
We establish a score-threshold for p(l|g, x) for each trial using our gold-labeled dataset,
Sgold,train and report f1-scores using Sgold,test. TF-IDF is defined [220]. SBERT uses the
all-MiniLM-L6-v2 model [221]. OpenAI uses the text-embedding-ada-002 model.

a specific policy item, x, or P (l|g, x). In PRM, we learn conditional attributes h1, ...ht of

either the article, policy, or both and marginalize over them:

P (l|g, x) =
∑
h1

. . .
∑
ht

p(l|g, x, h1, . . . , ht) . . . p(h1|g, x) (2.1)

where, as shown in Figure 2.4, h2 might be “covers SFBOS”, and h3 might be “covers

SFBOS votes/policy.”12 (Note that the model p(hi|g, x) = p(hi|g) if the attribute hi is only

dependent on the article, g.) Not all politics articles are about SFBOS, and not all SFBOS

articles cover policy. Such variety confounds unsupervised models, but is solvable when

broken into easier-to-supervise subproblems. This is not dissimilar to Chain-of-Thought

(CoT) [219], where language models decompose complex reasoning tasks.

Our attribute-based model, as shown in Table 2.1, helps us retrieve (g, x) ∈ Sgold with

68% F1. We show via an ablation experiment that each attribute hi is important for our final

prediction: Table 2.1 shows how F1 drops from 68% to 16% when we remove hi-conditioning

steps. Surprisingly, using PRM with TF-IDF outperforms different embedding methods

like SBERT [221] and OpenAI embeddings [222]. We suspect that specific technical phrases

are important for this task, which unsupervised embeddings might ignore; training a

supervised retrieval architecture like Dense Passage Retrieval (DPR) might help represent

12Because no natural linking information exists (i.e. hyperlinks in the article body), we typically model l∗
on the text of the article and/or policy proposal.
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these phrases in the embeddings, but as reported by [223] requires 100-1000 times more data

than we have collected. Our PRM approach also outperforms retrieval-specific methods

like BM25 [224]. Overall, these results indicate that attribute-specificity of PRM is crucial13.

We note that our PRM approach can seen as a supervised variation of CoT reasoning [219]

(albeit with a wide beam). As language models become cheaper and more scalable, more

directly applying CoT-style approaches to either identify hidden attributes to train auxiliary

classifiers, or directly link articles and policies, could be a viable approach.

Despite our positive results, we acknowledge that our approach is limited in several

ways. First, as mentioned above, our identification of hidden attributes was based on

manual error analysis and, ultimately may not a scale to new domains. Secondly, another

limitation we face is that if there is no lexical overlap between g and x, we would not

discover a link even if there were one. Also, we might be more exposed to this risk than

the results show: in constructing Sgold, our annotators might have also faced a similar bias

depending on the retrieval mechanisms (e.g. search) they used. A more comprehensive

evaluation set would be generated by journalists as they are working on stories.

2.2.4 Learning a newsworthiness model

Next, having established links, we seek to learn π∗, in other words, we seek to learn the

expert policy that determines π(a = 1|x), if a new policy x will get covered (a = 1). We use

our linked dataset {(g, x)}, described previously, and treat this problem as a prediction

problem where:

π(a|x) =


1, if x ∈ {(g, x)}

0, otherwise
(2.2)

Our goal is twofold: (1) Learning a good policy model π can show us which features of

events x lead to coverage. (2) Performing this task well at inference time takes us steps

13To implement BM25, we index g and use x as a search query. We use the retriv Github package:
https://github.com/AmenRa/retriv.
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Policy Features Analyzed
text of proposal
# prior meetings proposal has been discussed
# prior news articles linked to proposal
length of time proposal is discussed in meeting
transcribed text of city-council member’s policy discussion
# public commenters discussing the policy
summary of public commentary

Table 2.2: Summary of features for each policy item. Top section is generated via (a, p).
Bottom section is generated via SFBOS video transcriptions.

closer to building tools that will be useful for surfacing potential stories.

Previously, newsworthiness has been addressed as a feature-detection problem, as in

[225], where engineered-features measured specific criteria14. Researchers examined com-

binations of features to find newsworthy items but could miss items if their newsworthiness

did not fit the measurements. The emulation learning approach, though, dictates that,

having inferred volumes of actions from our PRM model, we can now formulate our task

as a prediction task and learn a far more complex pattern of newsworthiness norms. We

extract features from the linked (g, x) pairs derived in the first section to construct our

training corpus. As shown in Figure 2.3, in the news article, there are remarks: “After 14

months of delay”, “widespread debate” that seem to indicate that there aspects of this

policy that are not solely related to its topic that made it newsworthy.To capture some

of these features, we include SFBOS meetings where these policies are discussed. We

download audio for all meetings in our corpus15 and we use the WhisperX package [227] to

transcribe and perform speaker-diarization. See [17]’s Appendix for more about aligning

transcripts. We associate each (g, x) with a specific meeting if: (1) x is discussed in the

meeting and (2) g was published within a month of the meeting occurring.

Finally, in every SFBOS meeting, there is a special time for members of the public to speak,

called “Public Comment”. Since good newswriting is emotional [228], we hypothesize

14E.g. “statistically anomalous” [226], “sentiment=happy”
15Example: https://sanfrancisco.granicus.com/player/clip/43908.
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2.2 To Cover an Event or Not to Cover an Event?

∆ Word Distributions for Newsworthy vs. Non-Newsworthy Text
Policy Text Meeting Speech Public Comment

authorizing -0.41 housing 0.35 supervisor 1.98 budget 0.40
county -0.30 health 0.31 think 0.89 philippines 0.16
grant -0.26 board 0.30 know 0.82 solar 0.15
lawsuit -0.25 ordinance 0.29 want 0.78 medical 0.15
bonds -0.23 covid 0.28 people 0.76 covid 0.14
settlement -0.22 department 0.23 like 0.58 caltrain 0.14
contract -0.21 cannabis 0.22 need 0.43 rooms 0.13
expend -0.19 election 0.21 president 0.37 amendments 0.12

Table 2.3: Most likely words associated with newsworthy policy proposals, meeting speech
and public comment, measured by p(w|Y (x) = 1)− p(w|Y (x) = 0), where p(w|.) is based
on observed word counts. Also shown in the left-most column is the least likely words
(negative-valued). Colors shown are a heatmap for easy viewing.

City Lawsuits Tax/Revenue Basic Services Environment COVID-19 Hearings

francisco <number> department planning ordinance health
san exceed grant code tax hearing
city city housing findings tent case
county contract program environmental hotel commission
lawsuit authorizing health street emergency filed
settlement bonds services section covid-19 board
district revenue resolution plan business federal
filed services california act election supervisors

Table 2.4: Selection of top topics obtained by running LDA with k = 10. Color-coding
shows the likelihood of a newsworthy city council meeting minute containing a topic, with
green being more likely and purple being less likely. Titles are inferred topics.

that “Public Comment” might offer an additional lens on a policy’s newsworthiness. We

determine which speakers are members of the public using diarization to identify speakers

that only spoke during “Public Comment”16. Then, we calculate the lexical overlap between

their speech and the policy text. For more details about “Public Comment” and other

meeting sections, please see [17]. Features used for newsworthiness prediction are shown

in Table 2.2.
16We infer the sections of the transcript like “Public Comment” using time-stamped agendas, see [17]’s

Appendix for more detail.
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2.2.4.1 Newsworthiness Descriptive Insights

Before showing results from the predictive modeling, we show descriptive results. Our

main takeaway from this section is that policy text, meeting text and public speakers each

are conveying different newsworthiness information. We point these out because we will

show in the next section, despite clear differences observed in the features that we gathered,

not all are semantically useful.

Policy Text, Meeting Speech and Public Comment all cover different newsworthy topics.

We see a clear pattern in the kinds of words and topics used in newsworthy policies,

meeting speech and public commenters. Table 2.3 shows the top most likely words in

each aforementioned text category, calculated as ∆p(w) = p(w|a = 1) − p(w|a = 0). In

the written policy text, we observe topic-specific words like “housing”, “covid” and

“cannabis” more in newsworthy policies. Topics that were more likely to receive coverage,

shown in Table 2.4, include “Hearings” and “Environment”. However, meeting speech

for newsworthy policies (which is primarily speech of the SFBOS Supervisors and staff)

is directed at deliberation, like “think” and “know”. Finally, during public comment, we

see topic-specific speech, but related to a different set of concerns, like “solar”, “caltrain”,

“hotels”. We hypothesize that these are each different aspects of newsworthiness that are

being conveyed.

Figure 2.5: Number of words spoken
per meeting for newsworthy policies
versus non-newsworthy policies.

Newsworthy Policies are addressed for longer at

meetings, by more people. Policies that end up

getting covered in SFChron are also discussed at

greater length than policies that are not: this includes

(1) more words spoken (Figure 2.5), (2) more minutes

spent discussing (7.7 minutes vs. 2.1), and (3) more

speakers spent addressing it (4 speakers vs. 2.2. This
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Full Prompt Example
(1) Policy description: "Priority for Veterans with an Affordable Housing Preference

under Administrative..."
Presented in 2 prior meetings, 0 news articles
(2) Introduced by 4 speakers in the meeting for 0.7 minutes:
"...Without objection, this ordinance is finally passed unanimously. Madam Clerk..."
(3) 1 members of the public spoke for 1 minutes.
"<SPEAKER 1> spoke for 1 minutes and said: "Hello, this is . I would

like to oppose the motions affirming..."
Is this newsworthy? Answer "yes" or "no".

Table 2.5: Example prompt that shows 3 primary components: (1) Policy text, (2) Meeting
text and (3) Public commentary text (name censored). Text is truncated at first 50 words.
Further truncated in this example for brevity. Section lines/numbers shown for clarity.

number includes members of the public and council members.)17

The number of public commenters we are able to associate with specific policies, on the

other hand, is a relatively small number. We are only able to establish an expected n = .06

speaker per newsworthy policy and n = .04 speaker per non-newsworthy policy. This

amounts to 768 speakers associated, overall, with 13,089 policies. Thus, we hypothesize

that public comment will not impact our modeling performance, despite observations in

Figure 2.3 that public commenters tend to speak to different topics. We acknowledge this

as yet another limitation of our work and dataset. We hope that future work can either

(1) establish better methodologies to associate more public commenters with policies (2)

collect larger public meeting datasets or (3) incorporate other channels (e.g. social media).

2.2.4.2 Newsworthiness Predictive Insights

In order to jointly model numerical and textual features, we choose to format our features

jointly as a prompt. The structure of our full prompt is shown in Table 2.5, and it includes

all features listed in Table 2.2. We limit the size of the prompt by providing only the first

17Journalists gave us initial feedback, saying that city councils sometimes shove important policies into
sections of the meeting like “Consent Calendar” and “Roll Call”, which are typically not addressed for a long
period of time. This implies either that these cases are truly a minority, or that not enough attention is being
paid to these sections of the meeting.
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2.2 To Cover an Event or Not to Cover an Event?

Train F1 ROC MRR R@10 n
’13-’21 25.4 75.9 .26 64.4 1,595
’13-’20 18.9 68.8 .22 52.8 1,289
’13-’19 21.8 69.9 .22 53.9 1,084
’13-’18 19.5 67.8 .23 55.0 867
’13-’17 17.9 66.1 .22 52.2 693

Table 2.6: We alter the training split date cutoffs to be prior to Jan 1st on each of those years
to test whether GPT is learning to fit to specific newsworthy events (e.g. “COVID-19”) too
well, or whether it is picking up broader newsworthy trends.

50 words of the text fields (besides “proposal text”). We do not notice any impact of this

truncation in early experimentation. We use this prompt to fine-tune the GPT3-Babbage

model, shown to be a robust classifier [1], outperforming architectures designed for text

classification [145]. The length time spoken might be a more important variable than the

time spoken itself.

Policy text is the most predictive newsworthiness attribute, followed by meeting

discussion and then public comment.

In our first set of experiments, we ablate the prompt to explore which components of

the policy are the most important for assessing newsworthiness. We adopt a temporal

hold-out with cut date t0 = Jan 1, 2021, defining the splits Dtrain = {(xi, ai) : ti < t0} and

Dtest = {(xi, ai) : ti ≥ t0}, where a ∈ {0, 1} is the label. The training set is class-balanced

with countsntrain = (n
(1)
train, n

(0)
train) = (641, 627), giving empirical priors π̂train(a = 1|x) ≈ 0.506

and π̂train(a = 0|x) ≈ 0.494. The test set preserves the natural prevalence with ntest =

(n
(1)
test, n

(0)
test) = (180, 2310), i.e., π̂test(a = 1|x) ≈ 0.072 and π̂test(a = 0|x) ≈ 0.928. We perform

a time-based split rather than a randomized split because our goal is to test how well π(a|x)

extends into the future.

We find that the full prompt performs the best across all metrics we considered, but only

marginally. Ablating “Public Comment” from the prompt barely impacts performance,

while ablating all “meeting info.” impacts more. Removing “policy text” information, thus

forcing the model to just rely on meeting text alone impacts performance dramatically.
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Model F1 ROC R@10 MRR
Fine-tuned GPT3-Babbage

full 25.1 75.9 64.1 29.2
(1), (2) 24.2 71.2 63.1 27.2
(1) 16.2 64.5 52.2 23.1
(2), (3) 14.4 57.6 37.2 15.9

LR, full 19.7 67.3 51.1 22.8
GPT4, full 18.4 62.6 40.6 16.2
GPT3.5, full 13.4 63.2 46.7 21.3

Table 2.7: Results of policy model training, π(a|x) from fine-tuning GPT3 on full and
ablated versions of the prompt. Bottom sections show our baselines, Logistic Regression
(LR) and vanilla GPT4/GPT3.5. All rows with (full) show models that were trained on full
input prompt (Table 2.5). Rows with numbers, e.g. (1), etc. are ablation models trained
with those parts of the prompt. Metrics are: F1, ROC-score over logits for “yes” tokens,
Recall@10 (R@10) of each meeting (i.e. we surface the 10 most likely newsworthy items,
count recall) and Mean Reciprocal Rank (MRR) of newsworthy policies, per meeting.

GPT3, unsurprisingly, outperforms a very simple classifier, TFIDF+Logistic Regression

(LR in Table 2.7), but not by much, indicating there are simple textual cues we are learning.

GPT4 might be capturing national newsworthiness trends. Vanilla GPT4 outperformed

our expectation. We had hypothesized that many of SFChron’s newsworthiness judgements

on SFBOS were local. GPT4 underperforms most other classifiers, but not by much. Manual

analysis we perform finds that many errors were GPT4 failing to identify locally newsworthy

items (e.g. “local scooter ban”, local street renaming) and that many correct predictions

were made on nationally newsworthy trends (i.e. “COVID-19 responses”). There are two

likely conclusions: (1) SFChron has major overlaps for newsworthiness judgements with

national newspapers, and (2) general newsworthy language and framing is also used for

local newsworthiness.

Newsworthiness judgements are surprisingly consistent across time, with one major

exception. Table 2.3 shows that words related to specific events (e.g. those related to

“COVID-19”) are reflected in the perceived newsworthiness of policy: is the model fitting
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Human Validation on Different Tasks: Metric Score
Linking: How well can we identify
prior x that was covered in news articles g
(i.e. Mψ(x, g))?

Human F1 63.2
(Model F1) (58.9)
Cohen’s κ 36.3

Recommending: How useful is a recommendation system
recommending the top k = 10 policies
by estimated π(a=1 | x) score

Preference 84%
ID Accuracy 74.2%
Cohen’s κ 60.0

Table 2.8: Results from human evaluation. Top row: journalists identify real newsworthy
policies, by meeting, given a balanced dataset of n(1) ≈ 33% (or x|a = 1) and n(0) ≈ 66% (or
x|a = 0). Model f1-score is much higher than Table 2.7 because this is a balanced sample.
Bottom row: preference test for lists of newsworthy minutes (generated viaour models vs.
random) and identification (ID) accuracy for list-origin.

to a specific event (e.g. “COVID-19”) that happens to be newsworthy in our training and

test data, or is it learning either (1) larger event-types (e.g. pandemics more generally, like

“ebola”, are recurrent and newsworthy) or (2) newsworthy language patterns and other

non-semantic attributes (e.g. framing)?

To test this question, we retrain our model and increasingly restrict the date cutoffs of our

training set to ask whether a model would correctly predict the newsworthiness of policies

pertaining to specific events (e.g. “COVID-19”) if the likelihood of them being in the dataset

were to decrease. We show in Table 2.6 that, except for a dropoff after excluding data from

2021, our performance does not significantly change. We are additionally able to replicate

these findings with baseline Logistic Regression models, demonstrating that this is not

simply the result of GPT3’s pretraining. An error analysis shows that “COVID-19”-related

news was the least likely to be predicted correctly, and is the main contributor to this

performance decrease; our models correctly predicted numerous other specific events (e.g.

environmental, transportation-related, fire-arms related events). We take this as evidence

that major anomalous events, like COVID-19 specifically, do become newsworthy and are

unpredictable given our current approach. This highlights an important limitation and

needs to be taken into account if these tools are deployed: they must be used along with

models tuned to these blind spots.
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Human journalists find our newsworthiness judgments predictable and helpful.

We recruit two expert journalists18 and conduct human experiments with two aims:

(1) is our “newsworthiness” definition repeatable and (2) are our models helpful? For the

first, we test how well humans able to identify newsworthy SFBOS policies. We construct a

dataset by taking newsworthy policies from SFBOS meetings in our test set and a sampling

non-newsworthy policies in a 1-to-2 ratio of n(1) vs. n(0). As shown in Table 2.8, our best

models achieve 58.9 F1-score on this dataset, and humans score almost equivalently. It’s

tempting to think our models have reached a ceiling; however, the journalists are not San

Francisco-based, and are thus untrained, compared to our models. Finally, to test how

useful our learned policy model π(a|x) can practically be, we use π as a recommendation

model. We surface the top k = 10 policies where π(a = 1|x) is the highest from each meeting

and ask journalists to (a) indicate which policies they might write about and (b) guess

whether the list was a newsworthiness list or a random sample (they were told that it was

a secondary method, not random). Journalists preferred our lists to random 84% of trials.

2.2.4.3 Summary

In summary, this experiment shows the challenges of observability, even in seemingly

simple horizon-1 decision-making settings where we take an Emulation Learning (EL)

approach. We demonstrated that not only could a PRM-based linking function Mψ(x, g)

help us develop a more nuanced inverse function qθ(τ |x) but it could help us approximate

policy functions π(a|x) that were practically useful for journalists. We will be expanding this

work for other localities and seeking to gain greater insight into the specific decision-making

processes by applying concept bottleneck models in the future [229].

18Combined have > 40 years of newsroom experience
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2.3 Which stories are more newsworthy than others?

Now, let us revisit some of the simplifying assumptions we acknowledged when we

first simplified newsworthiness prediction to learning a binary prediction policy model

π(a ∈ {0, 1}|x), in Section 2.2. To review, we faced two limitations. (1) First, the goal of

the previous task was to predict whether or not an event would get covered at all in the

newspaper. However, many events get covered published every day – The New York Times

publishes 300 articles a day [187]: many are more newsworthy, many are less. (2) Secondly,

we simplified the input to our policy model s0 = (x, c). x was the event and c represented

external factors (e.g. newsroom coverage loads, events in the world), yet we assumed c

was constant. Can we learn a better and more nuanced policy model, π(a|x) covering a

wider range of newsworthiness while also incorporating external factors c?

All
Events

Any
story

Priority
Placement

No article
written

Article
written

N
ew

sw
or

th
in

es
s

Figure 2.6: A more granular spec-
trum of newsworthiness, and how it
is communicated to readers, goes be-
yond whether or not an event is cov-
ered in a news article (i.e. Events vs.
Stories). Some stories are prioritized
more highly within the newspaper.

I will first outline my new approach, which in-

corporates additional data about human decision-

making, and then define it more formally as an EL

task. As shown in Figure 2.6, even once an event is

covered in a news article, it can be promoted further

by editors based on how it is positioned relative to

other articles. Visual cues for editorial preferences

on homepages have a deep history in the design

principles of physical newspapers [230]. At The New

York Times, for example, top editors and designers

convened daily in a “Page One” meeting [231] to

determine the most important articles to put on the front page of the print newspaper the

next day. Typically, the most important decision was which stories get featured on the front

page, or page A1, of the newspaper; terms like “above the fold” also emerged to signal

story-importance (i.e. the story is above the point at which the newspaper folds, so it is
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seen on newsstands). In prior work [232], I found that these positioning decisions can help

us train a useful policy model π(a|x) for the newsworthiness prediction task. A simple

policy model trained to predict whether or not a piece of text would appear on the front

page of The New York Times, π(a =front page|x), could be learned and could generalize to

different textual domains.

Figure 2.7: Two “newsworthiness”
signals that editors make to guide
reader attention are shown above.
(1) Position (i.e. articles that are
placed above, ↑, and left,← relative
to other articles are more important
[233]). (2) Size (i.e. articles that are
larger than other articles are more
important) (3) Graphics and Design
(i.e. articles with graphics and im-
ages are more important).

In the digital era, Page One meetings evolved

into Homepage Meetings [234], influencing the design

and content placement on the website’s homepage

for the upcoming day. As such, homepages continue

to be distillations of professional judgment and pri-

orities. One visual cue editors use on homepages

is positional placement, with articles positioned

towards the top and left of a page considered more

important [235]. This stems from observations that

readers naturally begin scanning from the top-left

corner [236]. Secondly, the space articles occupy is

considered: larger articles or headlines are perceived

as more important [237]. In print media, prominence

is conveyed through more column space; in digital

media, longer headlines, featured images, and ex-

tended summaries are used. Finally, graphics and

design also play a pivotal role in signaling the im-

portance of news stories. Articles accompanied by

photographs, videos, or other multimedia elements are often deemed more significant [238].

The use of design elements (e.g. capital letters, bold fonts, and color) further enhances a

story’s prominence. The way humans spatially organize information reflects a key signal of

preference [239]: the homepages of news organizations are one such artifact where spatial
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organization can be studied at scale. Meticulously crafted by professional human editors,

their layouts reflect the informational preferences of newspapers [240] and shape public

perception. Inspired by my early work modeling the page placement of articles in the

physical newspaper, I will now introduce an experiment that considers spatial positioning

of articles relative to each other on an outlet’s homepage.

My goal here will be to push the bounds of newsworthiness prediction using additional

information about spatial layouts. I ask two primary research questions: (1) First, how well

can spatial layout signals be used to model editorial preferences? Can we capture these layout

signals by considering pairwise comparisons between articles, as shown in Figure 2.7? (2)

Secondly, do models for editorial preferences generalize across different corpora and are they be

useful in different contexts? In other words, can they serve a newsworthiness prediction role,

π(a|x) for x that is not news (i.e. recall, in the last section, x = city council policies)?

2.3.1 A Pairwise Comparison Model

Now, let us conceptualize how to approach spatial positioning with an emulation learning

approach. Recall that, previously, our inverse function qθ(τ |g) = qθ(a | x, gobs) used

the linking model Mψ(x, g) as an observation channel — with recall R(x) — to convert

detections/non-detections into soft posteriors over the latent action a. These posteriors

supervised reward modeling to fit a policy model π̂(a | x) matching qθ(a|x, g), yielding

a newsworthiness predictor for new events. Now, we extend the EL framing in two

ways. First, each episode now starts at s0 = (x,C), where x is a candidate article and

C is the contemporaneous set of competitor articles x′ ̸= x on the homepage. Then,

to incorporate these comparisons, we extend beyond binary actions: from a ∈ {0, 1}

(1 = cover, 0 = ignore) to an action set that is continuous, a ∈ Rd, encoding a score

that compares x relative to C (e.g. based on placement/visibility: size, position, font,

etc.). The trajectory remains horizon-1, τ = (x, a, C), and the goal g is the observed

placement of x, within the realized layout. The inverse function qθ(τ | g) recovers the
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latent placement action given the observed layout: qθ(a | x,C, g); the policy π∗(a | x,C)

maps an article and its context to a distribution over placements19. In practice, we do

not observe a directly; instead we observe pairwise preferences, implied by the layout. We

define an observation channel to encode these preferences, po(x > x′), that compares two

articles, x and x′. po(x > x′) = 1, for example, if x appears larger/more prominent than

x′ 20. Pairwise preference modeling provides a natural observation channel for EL because

any latent-utility model of homepage placement can be reduced to a product of pairwise

comparisons. This guarantees that, under the assumption of transitive utilities, pairwise

comparisons suffice to recover the inverse distribution qθ and to supervise the policy πθ [241,

243]. Aggregating po(x > x′) against all x′ ̸= x ∈ C yields a posterior over a latent utility

uθ(x,C) (or over a); external factors c enter through C. The inverse function qθ(τ | g, x, C)

depends on which x′ ̸= x are on the page and treats newsworthiness as relative.

Conceptually, the preference model po(x > x′) plays a dual role. For the inverse step,

it supplies the observation likelihoods that turn layouts into soft responsibilities over

actions/utilities. For the policy/reward step, the same constraints inform π̂ (via pairwise

or listwise losses), ensuring that the learned policy reproduces observed prioritization

under varying C. Moving beyond the binary formulation, a ∈ {0, 1}, this preference-based

observation model directly encodes competition through C, and identifies a continuous

actions/utility that governs ranking and spatial allocation. It is more data-efficient under

partial observability (we need not recover exact coordinates to learn a consistent order),

naturally generalizes to listwise ranking and layout optimization, and subsumes the binary

case as a special limit. When C collapses to a single “null” competitor and observations

reduce to detection/non-detection, the framework reduces to the earlier publish/ignore

model, with the binary decision recovered by thresholding the learned utility/reward.

19In discrete-slot layouts, a Plackett–Luce policy ranks the slate by {uθ(x,C)}; in a continuous view, a
softmax over slot utilities (with slot weights) yields a distribution over placements. We take a simpler
approach in this work; as described in Section 2.3.3, we use our observation model p(x > x′) to perform
pairwise comparisons to rank x relative to all other x′ ∈ C \ {x}

20We can implement this in different ways (e.g. via a Bradley–Terry/Thurstone likelihood po(x>x′ | ·) =
σ
(
uθ(x,C)− uθ(x′, C)

)
[241, 242]). We train a logistic regression model, described in Section 2.3.3.
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2.3.2 News Homepages Across the World: Our Dataset

To implement Emulation Learning (EL) in this setting, we need to be able to generate

comparisons between articles, po(x > x′); thus, we need to collect observational data to

support these comparisons. We compiled a large and continuing dataset of homepage

snapshots, then, we bootstrapped a layout parsing model to detect the positioning of

articles on homepages. I will describe each step in this process now.

We start by compiling a list of 3,489 news homepages, as of the time of this writing,

which we scrape twice daily21 on an ongoing basis over a period of five years. From

2019-2024, we have collected a total of 363,340 total snapshots. Our dataset collection is

actively maintained and facilitated by a large contributing community of over 35 activists,

developers and journalists. We collect homepages from national news outlets (e.g., The

New York Times, The Wall Street Journal), state-level news outlets (e.g., San Francisco Chronicle,

Miami Herald), as well as local and subject-matter-specific news sources. Table 2.8a provides

a sample of the different categories of news homepages included in our dataset, and a full

list can be found in [212]. Additionally, we collect homepages from news websites of over 32

countries in 17 languages (please see Tables 2.8c and 2.8b for a more detailed breakdown).

This is an ongoing and expanding effort: we have actively encouraged contributors to

add their own news homepages of interest using for our suite of tools to scrape.22 This

community helps us diversify the news sources in the dataset that we collect and helps us

avoid blind spots; it also helps us to test our EL approach beyond dominant cultures.

2.3.2.1 Data Collection Pipeline

Our dataset collection runs in a chron job twice a day, and uploads data to Internet Archive.

For each snapshot, we store the following information: 1. All links on the page: We store

21We chose a twice-daily capture, every 12 hours, to capture morning and evening publishing cycles. This
is historically when many news outlets will publish new articles and update homepages [244].

22For more information on how to contribute, please see: https://github.com/palewire/news-homepages.
For all code and data associated with this project, see https://github.com/alex2awesome/homepage-newswo
rthiness-with-internet-archive.
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Category Example Outlets
National The New York Times, The Wall Street Journal, NPR, Bloomberg
State-level San Francisco Chronicle, Miami Herald, Chicago Tribune
Local Sturgis-Journal, The Daily Jeffersonian, LAist, The Desert Sun
Subject-specific The Weather Channel, Chessbase, ESPN
International India Today, Ukrinform, BBC, Prensa Grafica, Japan Times

(a) Sample of Homepages by the type of news outlet.

Homepage Count by Country

1 3 10 30 100 300 892

(b) Homepages being collected in each country.

Language Count

English 975
Spanish, Castilian 44
Portuguese 36
Nepali 24
French 21
German 10
Japanese 9
Norwegian 8
Hindi 7
Hebrew 7
Russian 7
Italian 5
Ukrainian 5
Chinese 3
Other 6

(c) Homepages being
collected in each lan-
guage.

Figure 2.8: The NewsHomepages dataset is an actively maintained, twice-daily scrape of over
3,489 news homepages. It is updated and collated by a community of over 35 activists,
developers and journalists. The breadth of different homepages allows us to study patterns
across location and language; to generalize beyond a single set of norms.

a flat-list of hyperlinks on every homepage and associated text. 2. Full-page screenshots:

We store JPGs of each complete homepage as we render it. 3. Complete HTML snapshots

(subset of pages): For a subset of homepages, we save a compressed version of the webpage,

including all CSS files and images, using SingleFile.23 In addition to our Internet Archive

storage,24 we also synchronize with Wayback Machine to store these homepages, providing

a secondary backup and ensuring long-term preservation.

23https://github.com/gildas-lormeau/SingleFile, incidentally the same software that Zotero uses. In
initial experimentation, we observed that capturing complete, compressed HTML snapshots was far more
robust than capturing assets

24https://archive.org/details/news-homepages
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2.3.2.2 Parsing Homepages

To robustly extract visual attributes for each article on a homepage (i.e. size, position,

presence of graphics), we need to perform a layout parse: we need to determine bounding

boxes for all articles on a homepage. Examples of bounding boxes are shown in Figure

2.7 — each bounding box, also referred to as article card, covers all information directly

associated with that article. Layout parsing is a well-researched field [245, 246]. However,

homepages present unique challenges due to their diverse structures – text of varying size,

fonts, colors and images – and lack of training data[247]25. Although homepage layouts

are easily perceived by humans, we find that existing resources fail for parsing homepages.

Now I will describe how we bootstrap a state-of-the-art layout parser for homepages.

2.3.2.3 Bootstrapping a Bounding Box Detector

On a high-level, our process is: (1) we use a simple deterministic algorithm to generate

candidate layout parses, (2) apply a filtering step to exclude low-quality parses, (3) use

our high-precision dataset to train a more robust classifier, following other bootstrapping

approaches [248]. We describe each step in turn, now.

Step 1: Find Bounding Boxes Deterministically We design a deterministic algorithm,

called the DOM-Tree algorithm, to start our bootstrapping process. At a high level, the

algorithm traces each <a> tag in the Document Object Model (DOM) and extracts the

largest subtree in the DOM that contains only a single <a> tag (see [212] for illustration). This

method can extract the maximal bounding box for each article, however it faces robustness

challenges, for example, if a link exists within an article card (e.g. a link to an authors

page). We apply this algorithm to approximately 15,000 homepages across 15 outlets in

the NewsHomepages dataset. Since each outlet typically maintains a consistent layout on

their homepages across samples, we include more outlets for generalizability.

25Existing work typically focus on parsing text around line-breaks (e.g. paragraph breaks). As can be seen
in Figure 2.7, the same article box encompasses many line-breaks.
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FP#1 FP #2 FN #1 FN #2 Total Errors % Correct

Challenge DOM-Tree Alg. 117 137 127 265 646 61.3%
Detectron2 25 23 27 87 162 90.3%

Clean DOM-Tree Alg. 12 20 0 13 45 97.1%
Detectron2 15 24 0 18 57 96.3%

Table 2.9: Error analysis of bounding box detection methods comparing the DOM-Tree
algorithm and a Detectron2 model across two datasets: the challenge dataset and the clean
dataset. The challenge dataset is formed by selecting the bottom 10% of articles based
on the match between OCR-extracted text and retrieved link text, while the clean dataset
contains well-matched articles. Error types are divided into false positives (FP #1: multiple
articles in one box, FP #2: no articles in a box) and false negatives (FN #1: partially captured
articles, FN #2: articles not captured). As can be seen, our trained model performs at par
on the DOM-Tree algorithm in the clean settings and is far more robust in noisy settings.

Step 2: Filter Low-Quality Bounding Box Extractions We take several filtering steps to

prevent dataset impurities, or “drift” [248]. First, we train a simple, reliable text classifier

to identify and exclude non-news article links (e.g. log-in pages)26. Then, we exclude

bounding boxes that did not contain enough text27 (3) Finally, we exclude bounding boxes

with improperly rendered images28 This filtering process significantly reduced the number

of bounding boxes that did not correspond to articles, were broken or corrupt, enhancing

the training data quality.

Step 3: Train a Robust Classifier Now, with our dataset in hand, we trained a Detectron2

model [250] to draw bounding boxes around article cards on pictures of homepages.

Detection uses ResNet-101 as a backbone with a Feature Pyramid Network (FPN) for

extracting multi-scale features and Smooth L1 loss for bounding box regression. During

training, we used a base learning rate of 0.02 with a linear warmup over the first 1000 steps.

We trained for 10,000 steps with learning rate reductions after 5000 steps, a weight decay

of 0.0001 and momentum of 0.9, on 4×A40 GPUs for 24 hours.

26We manually labeling 2,000 URLs as “news article” or “not” and train a Logistic Regression classifier
based off a bag-of-3-gram representation of each URL. The model achieves an accuracy of 96%.

27We determine this by first rendering the HTML pages as images and overlaying bounding boxes, then
running OCR to extract the bounding-box text.

28Likely due to errors in HTML extraction or dead links. To address this, we rendered HTML pages as an
image and used the YOLO object detection model [249] to compare these images to the JPEGs in our archive.
If a screenshot was not within 80% of the archived snapshot, we discarded the snapshot.
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2.3.3 Newsworthiness Preference Modeling

With precise layout information for 363k homepages in hand, we arrive again at a core

question of this newsworthiness formulation: can we model the editorial preferences in

homepage layouts?

2.3.3.1 Preference Modeling Approach

Performing a full comparison of (x,C) presents a number of challenges. Firstly, publishing

volumes are non-uniform: some days have lots of news (and many newsworthy stories)

while others have less. Secondly, a homepage is intended to present a collection of articles

as a cohesive bundle: individual articles do not exist in isolation [251]. Predicting the place-

ment of a single article without considering surrounding context would limit information

[252]; conversely, attempting to predict the placement of all articles simultaneously poses a

combinatorial challenge. Finally, certain areas of homepages (e.g. “Latest News” feeds,

which are ordered based on chronology) lack editorial decision-making altogether [253].

As stated in Section 2.3.1, we attempt to address these challenges by reducing our

inverse function qθ(a|x, g, C) and our policy function π(a|x,C) into a pairwise preference

comparison, invoking the transitive utilities assumption [241, 243]. Specifically, we consider

pairs of articles (x, x′) and train models to predict a binary preference variable po, where

po(x > x′) =


1, if outlet o prefers a1 over a2,

0, otherwise.

The pairwise preference model po(x > x′) allows us to recover the inverse distribution

qθ and to supervise the policy πθ by converting each homepage layout into likelihood

factors: qθ(a | x,C, g) ∝ π0(a | x,C)
∏

x′∈C Pr
[
po(x > x′) | a

]
. Of course, the transitive

utilities assumption may not hold for real newsworthiness judgments: pair (x,C) may

involve higher-order interactions (e.g., thematic bundling of articles, or article diversity
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constraints) that violate transitivity; in such cases, pairwise models still offer a tractable

approximation that captures the dominant utility signal while leaving space for richer

listwise or set-based extensions [254, 255]. In addition, the pairwise formulation learns

from the set of articles that actually appear on a homepage. As such, it estimates relative

prominence among events x that might be covered. We have no guarantees that it will

extend to distinguishing covered from uncovered events, discussed previously.

In this work, we limit the layout variables we consider to: size and position. We explore

three combinations of these variables to create weak labels for the preference variable, p:

1. Size-based Preference: We define po(x > x′) = 1 if article x occupies more surface

area on the homepage than article x′: prominent articles are given more space [256].

2. Position-based Preference: We set po(x > x′) = 1 if article x is placed in a more

favorable location on the homepage than article x′, such as higher up or more to the

left, based on common reading patterns [257].

3. Combined Size and Position Preference: Here, po(x > x′) = 1 if article x either

occupies more surface area or is in a more favorable position than articlex′, particularly

focusing on articles that are in the top 10% by size on the page.

While there are other design variables that could give an even finer-grained preference

(e.g. font, color, images), we seek here to establish that even a coarse weak labeling can

still provide valuable insights. To model our weak preference labels, p, we train a simple

Transformer-based binary classifier, distilbert-base(X), which classifies a text sequence

X . Our model concatenates the input articles: X=a1<sep>a2 as input; the model learns to

recognize the <sep> token as a boundary between the first and the second articles.
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Size Position × Size Position

Model Name F1 (Weak/Human) F1 (Weak/Human) F1 (Weak/Human)

Flan-t5-base 91.9/28.4 70.7/65.5 64.5/56.1
Flan-t5-Large 66.6/20.2 54.9/61.0 34.5/58.2
Roberta Base 91.0/26.6 64.9/62.9 37.3/53.9
Roberta Large 85.4/25.1 47.2/65.1 49.3/56.1
Distilbert-Base-Uncased 93.1/31.1 75.2/70.4 70.1/61.2

Table 2.10: F1 scores for predicting pairwise preference po(x > x′) for different features,
across different models (on NYTimes data). On the left, we show results in predicting the
weak label — coarser variables (e.g. size) tend to have greater consistency. On the right, we
show human analysis of models’ decisions: finer-grained variables (position x size) have
the highest performance.

2.3.3.2 Preference Modeling Variations

We explored modeling variations first on the New York Times29. We test 5 different

models: {distilbert-base-uncased, flan-t5-base, flan-t5-large, roberta-base, roberta-large}

and constructed a training dataset of 74,857 article-pairs and a test dataset consisting of

18,715 datapoints consisting of pairs of NYTimes articles from same homepages.

We observed exploding gradients in the flan-t5-large and RoBERTa-large models,

motivating us to use a learning rate limit of 5e-5 for all the models and gradient clipping,

for the sake of equal comparison. We applied Parameter-Efficient-Fine-Tuning [258] on

flan-t5-base, flan-t5-large, roberta-base, roberta-large models to minimize overfitting, as

we had limited of datapoints. We used 4xA40 GPUs and 16xA100 GPUs. The distilbert-

base-uncased model outperforms other models (Table 2.10) for our weak labels. We run a

human validation experiment, enlisting a former New York Times journalist to rank-order

100 pairs of articles in our dataset. Considering these as ground truth, we find that models

trained on position and size score an F1 = .7. From our list of 3,000 outlets, we select

31 outlets for detailed analysis. We selected well-known outlets in various categories,

including different political leanings (left-leaning vs. right-leaning30), local and national

29We start with the New York Times as [187] that meticulous rules, with full-time homepage editors hired, to
that homepage layouts reflect preferences.

30As classified by MediaBiasFactCheck.com
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Outlet Accuracy F1 Recall Prec.

phoenixluc 57.1 70.3 57.4 90.7
newsobserver 75.0 72.5 74.3 70.7
slate 72.4 61.6 66.2 57.7
jaxdotcom 75.2 63.4 65.5 61.4
arstechnica 64.7 17.5 41.4 11.1
airwaysmagazine 72.5 73.7 78.9 69.1
denverpost 73.7 67.8 70.5 65.4
thedailyclimate 82.0 80.9 81.3 80.6
breitbartnews 68.9 22.8 54.7 14.4
foxnews 67.3 38.6 55.6 29.5
motherjones 71.4 63.0 68.7 58.2
thehill 68.8 55.5 59.8 51.7
wsj 70.0 48.0 52.0 44.6

Table 2.11: Pairwise newsworthiness preference judgments, po(x > x′) across a sampling of
different outlets, made by Distilbert-Base-Uncased model trained on (position, size) cues.

levels, and varied subject matters such as science, chess and aviation. For each outlet, we

collected between 200 and 300 homepage snapshots, resulting in 1,000 to 50,000 pairs of

articles. We created an 80/20 train/test split and trained distilbert-base-uncased models

for each outlet. We trained each model with 5e-5 learning rate limit, 3 epochs, 0.01 weight

decay. Each article in our dataset includes the textual representation as it appeared on the

homepage. To enhance the reliability of our models, we undertake several data processing

steps informed by preliminary experiments: (1) we only sample pairs of articles that are

adjacent on the homepage, to curate preference pairs that are more likely to be challenging

and topically similar. Secondly, we clean the textual representations by stripping out any

times, dates, and formatting elements. We also remove author names to prevent the models

from learning biases based on authors who might be favored by the organization. Please

refer to [212]’s Appendix for a detailed list of the outlets used and the specific number of

data points associated with each.
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2.3.3.3 Preference Model Results

We show our results in Table 2.11. While some models (e.g. Breitbart) perform noticeably

poorly, we note that the majority of our models score above f1 > .6. We do not find a

significant correlation between model performance and training set size. We were surprised

to observe the tractability of this task; this indicates that many concerns we had about

noise were either handled by preprocessing, or not as important as we believed.

2.3.3.4 Preference Model Comparisons between Outlets

To demonstrate the analytical insights we can obtain through policy modeling π, we

interpret each outlet’s trained preference model as an outlet-specific policy πo(a | x,C) that

calculates the newsworthiness that outlet would assign to an event x given context C. To

quantify policy agreement, we apply each πo to the same held-out article pools Ak drawn

from multiple outlets and compute Kendall’s τ between the resulting orderings {πo(Ak)},

thus comparing decisions rather than content. As a control, we contrast these policy-level

correlations with topical similarity (e.g., SBERT averages), isolating convergence in editorial

policies even when content distributions differ.

Now, we aim to rank-order lists of news items drawn from a larger pool of articles

to calculate the agreement rates for newsworthiness decisions between different news

outlets. Previous research has observed surprising overlaps in sentiment and preferences

between right-leaning and left-leaning outlets [259], and we wish to quantitatively test this

phenomenon using our preference models. We selected 9 of the 31 outlets for which we

trained preference models in the previous section. From each outlet, we sampled 1,000

articles, matching on variables such as topic, length, publication date, and other potential

confounders. These 9 outlets were chosen because they represent a range of political

viewpoints. For each model noi (corresponding to outlet oi), we used it to sort lists of 1,000

articles {a1, a2, . . . , a1000}9j=1 from outlets {o}9j=1. In other words, the output of applying

model noi to the article list from outlet oj is a fully sorted list noi(Aj). We used the size ×

55



2.3 Which stories are more newsworthy than others?

(a) Kendall’s τ correlation between the news-
worthiness preferences expressed by preference
models trained on different news outlets.

(b) Cosine distance of average SBERT similarity
between articles sampled from each outlet.

Figure 2.9: Comparison of Kendall’s τ rank correlation (on newsworthiness judgements)
and SBERT cosine similarity (on articles) across news outlets.

position model for this experiment, as performance was similar to the size-only model,

and we believed that the multivariable models capture more newsworthiness information

than the single-variable models.

We calculated Kendall’s τ , a correlation measure for ordinal data, between each pair of

sorted lists (noi(Ak), noj(Ak)) for all i, j, k, and averaged the correlations across j. Figure 2.9a

shows the resulting correlation matrix. Some surprising insights emerge: notably, Breitbart,

a right-leaning outlet, and Mother Jones, a left-leaning outlet, have one of the highest rates of

agreement, indicating that πbrietbart(a|x,C) is similar to πmother jones(a|x,C). This is despite

them not having high topical similarity31 As can be seen in Figure 2.9b, topical similarity

between outlets aligns more closely with political differences: distinct right-wing clusters

(e.g. Fox News, Brietbart and Mother Jones) segment from left-wing clusters (New York Times,

The Hill, and Mother Jones). Taken together, these results suggest that newsworthiness

preference is a novel and orthogonal variable to topical similarity.

31To perform this comparison, we compared outlet-level embedding vectors. To derive these vectors, we
sampled 100 articles per outlet and generated embeddings for each article using SBERT [221]. Then, we
averaged these embeddings to create aggregated outlet-level embeddings [260].
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Outlet Top Policies LLM Summaries Examples of Policies

Weather
Channel

Environmental Policies, Public
Health and Emergency
Response, Infrastructure and
Development

Reducing nutrient pollution from
wastewater; Accepting grants for
forensic science improvements

Daily Climate Environmental and Energy
Policies, Urban Planning and
Development

Agreement with North Star Solar;
Building code enforcement

Fox News Community and Public Safety
Policy, Education and Social
Policy, Fiscal and Economic
Policy

Appointment of individuals to
advisory committees;
Appropriating funds for San
Francisco Unified School
District; Developing materials
on domestic violence

Mother Jones Social Policies, Environmental and
Health Policies

Sanctuary City Protection; Urging
Pardons; Edible Food Recovery
and Organic Waste Collection

Ars Technica Infrastructure Policies System Impact Mitigation
Agreement; 6th St. Substation

NYTimes Social & Cultural Awareness
Policies, Labor & Employment,
Economic, Housing policies

Commemorative and Awareness
Events; Labor Dispute Hearings;
Affordable Housing Loans

WSJ Economic and Infrastructure
Policies, Governance and
Legislative Policies

Contract modifications; Bond
sales; Ground lease agreements;
Charter amendments
concerning commissions and
departments related to aging
and adult services

Table 2.12: Newsworthiness Prediction using Homepage Models applied to city council
policies: Using our pairwise preference models po(x > x′) as a policy model, we rank-order
city council minutes from Section 2.2.2. Summaries of the top 10 most newsworthy policies
published by the San Francisco Board of Supervisors, as ranked by models trained on 7
different homepages.
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2.3.4 Newsworthiness Prediction with Homepage Preference Models

We now return to a key question for newsworthiness prediction: can the policy model

π(a | x,C) be reliably applied in real-world settings? There are reasons for skepticism. As

discussed in Section 2.3.3.1, a key concern is whether a preference model trained exclusively

on published articles (x, x′) will generalize to texts outside the news domain — particularly

those that may lie below the threshold of newsworthiness. To test this, we use the list of city

council policies gathered in Section 2.2. We hypothesize that editorial preference rankings

learned from on news homepages can help us further identify newsworthy content, by

training our policy model π(a|x,C) to detect more nuanced ranking of the most and least

preferred stories of a news outlet. To test this hypothesis, we applied the preference models

learned for each outlet to sort the list of the San Francisco Board of Supervisors’ policies

(compiled by [17]). Then, we selected the top 10 items from the ordered lists noi and used a

large language model (LLM) to summarize the key points raised in each policy.32

The LLM’s summarization results and examples are shown in Table 2.12. We observe

various themes emerge, with subject-specific outlets like The Weather Channel highlighting

policies related to environmental issues and Fox News highlighting policies related to

public safety. We presented these results to a group of journalists, and 81% of respondents

indicated they were impressed and would consider using such a system in their workflow.

These findings demonstrate the potential of our models to assist journalists in identifying

newsworthy leads from large corpora of documents, thereby supporting investigative

journalism and timely reporting.

Our novel dataset and experiments show that homepage editorial cues provide a wealth

of resources for (1) novel news analysis and (2) newsworthiness detection [17, 225]. First,

as we show in Section 2.3.3.4, editorial decision-making is distinct from simple topic

preferences. In fact, information prioritization commonalities can be observed between

outlets from vastly different political, social and topical backgrounds. Secondly, as we

32We used GPT-4 for this experiment.
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show in Section 2.3.4, preference models trained on news homepages can be transferred to

related corpora (e.g. city council meeting minutes) and can surface relevant minutes to

journalists searching for stories.

2.3.5 Summary

In this chapter, we developed and evaluated models for the task of newsworthiness prediction,

framed through the lens of emulation learning. Starting from a binary classification

of whether an event should be covered or not, we showed how limited observability

necessitated the construction of a linking function M_ψ(x, g) to infer both positive and

negative examples of news coverage. By applying probabilistic relational models, we were

able to decompose the linking task into tractable subproblems, yielding robust alignments

between city council policies and their associated articles. This linking step enabled us

to build richer training data, from which we learned predictive models π(a | x) that

approximate editorial judgments. Importantly, we demonstrated that features drawn

from different sources—policy text, meeting transcripts, and public comment—carry

complementary newsworthiness signals, though their predictive contributions differ. Our

experiments highlighted both the potential and the limitations of this approach, with

strong results tempered by challenges around blind spots, sparse signals, and anomalous

events such as COVID-19.

Building on this, we extended the scope of newsworthiness prediction beyond binary

coverage decisions to relative prioritization of stories on news homepages. By modeling

homepage layouts as collections of pairwise preferences, we captured editorial judgments

about prominence, size, and positioning—key signals that translate well into ordinal

utility models. Our large-scale NewsHomepages dataset enabled us to train preference

models across a wide variety of outlets, and to test their transferability to non-news

corpora, such as city council proposals. The positive reception from journalists, who

found the surfaced leads both credible and useful, underscores the practical promise of
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this approach. Altogether, this chapter shows how EL provides a unifying framework for

learning from partial, noisy, and norm-driven editorial decisions. It also demonstrates that

newsworthiness, while subjective, can be approximated computationally in ways that both

deepen our understanding of editorial norms and support new tools for journalists.

2.4 Chapter Conclusion

In this Chapter, we have explored how observability challenges arise in emulation learning.

Specifically when actions a that are observed are distant from goal states g, we must

be careful to model a that actually represent to the actions we wish to study (Sections

2.3.3); infer ã ∼ qθ(a|g) in a way that is robust to noise; and ensure that ã covers a useful

support to learn π(a|x) (Section 2.2). I showed how, with the right observation channels,

we can address these challenges and recover more robust and nuanced approximations

of a. First, in the horizon-1 “publish or not” setting (Section 2.2), where a = 1 if an event

was covered and a = 0 otherwise, and we noticed that relying on g, alone, would only

give us information about articles where a = 1 and would not cover a wide support

(supp(x) s.t. ∃ g ⊊ supp(x).) We introduced a linking function M_ψ(x, g) and treated it as

an observation channel: it helps us recover a = 1 if ∃ g s.t. M(x, g) = 1 and a = 0 if

M(x, g) = 0 ∀ g. With this constructed inverse model, qθ(a|g), we trained a policy π(a|x),

we demonstrated that aspects of x — textual descriptions, meeting deliberation, and public

comment — all convey different facets of newsworthiness. Human studies showed that

expert journalists both replicate our operational definition of newsworthiness and prefer

recommendation lists induced by π̂, suggesting practical value for newsrooms. At the

same time, shocks such as COVID–19 exposed a blind spot: when the world changes

regime, observation channels learned on past data under-represent emerging salience.

Second, to move beyond a binary notion of newsworthiness, we modeled homepages as

sets of pairwise preferences (Section 2.3), learning po(x > x′) as an observation model over
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relative prominence and using it to recover utilities (or continuous actions) that rank items

within their contemporaneous context C. We showed that weak spatial cues (size, position)

can be converted into dense pairwise supervision. Comparing learned policies across

outlets revealed an orthogonal dimension to topical similarity: organizations that disagree

on content can still agree on prioritization. Moreover, those learned preferences transfer:

applying πo(a | x) to city–council proposals surfaces leads journalists judge as credible.

Common among both approaches to inverse modeling, qθ(a|g) is the following philosophy:

generally, we consider emissions that can be observed in our artifacts, g, and construct

observation channels that effectively generalize these emissions to latent actions a.

The inverse function qθ(a|g) is one of the most important and distinguishing aspects

of emulation learning, and while this Chapter focuses on some of the crucial challenges

that can emerge when trying to learn it, we have barely scratched the surface. The next

chapters will move on from inverse function modeling and will explore diverse challenges.

In Chapter 3, we introduce tasks that go beyond horizon-1 to sequential settings to learn

more complex policy models π(τ |x). In Chapter 4, we address the execution or realization

of τ into state-space s = s1, s2 . . .; sn = g. In Chapter 5, we explore datasets that give

us richer observability into intermediate state spaces. Although we will not discuss

observability challenges in the same degree of detail as we did in this Chapter, the challenges

of constructing robust inverse models qθ(a|g) continue to hover over all emulation learning

tasks. Indeed, I hope in future work to continue to explore observability, and to do so in

a more theoretical way. We need research focused on developing a theory about which

tasks are observable and which tasks are not. Explainability, I believe, offers one theoretical

path: if inferred actions ã cannot explain observed outputs g, then the inverse function

or the action vocabulary A are lacking. I am excited about continuing to adapt classes

of methods in latent variable analysis to emulation learning to improve inverse modeling.

Bayesian Wake-Sleep Cycle [193, 198], for instance, is one such method that, like many

probabilistic models, seeks to infer latent variables z. It bootstraps a Recognizer, R(g)→ a
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(i.e. our inverse model) and a Generator, G(a)→ g (i.e. our state-transition model), starting

from synthetically constructed goal-states, g′ with known structure a, and slowly mixing in

human-generated goal-states g. Taking ever-more performant pretrained LLMs as initial

Generators, I believe we can follow approaches like Wake-Sleep to extend inverse modeling

in new and interesting ways. For practitioners of emulation learning, this Chapter serves as

a reminder to not take inverse-modeling for granted!
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Chapter 3

Learning Action Trajectories via Emula-

tion Learning

3.1 Source-Finding: A Study in how Information Comple-

ments

After journalists select newsworthy events to report, described in Chapter 2, they must then

find sources to support, confirm and expand their story. This process, source-finding, is

the creative process we will focus on in this Chapter. As shown in Table 3.1, a typical

news article uses a combination of different kinds of sources; these sources can be people,

documents, or even databases.

Figure 3.1: In the journalism pipeline outlined in Section 1.3, we focus now on the second
step: source-finding, or finding informational sources to confirm, contextualize and broaden
the events being written about. Here the published article is the goal-state g, the (latent)
sequence of sourcing actions forms a trajectory τ = (a1, . . . , aT ), and our inverse model
qθ(τ | g) reconstructs τ̂ from g. We then learn a policy π(τ | x) to emulate journalists’
trajectories conditioned on context x. Source-finding requires us to learn to complex
relationships between information and to reason about a story’s narrative needs.
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3.1 Source-Finding: A Study in how Information Complements

Sources used to inform a sample news article
Prime Minister Laurent Lamothe announced his resignation. ← from Statement
The announcement followed a corruption commission’s report. ← from Report
“There was no partisan intereference” said the commission. ← from Quote
However, curfews were imposed in cities in anticipation of protests. ← from Order
It remains to be seen whether the opposition will coalesce around a new candidate.

Table 3.1: Different informational sources used to compose a single news article. Source
attributions shown in bold. Some sources may be implicit (e.g. 4th sent.) or too ambiguous
(last sent.). Information types used by journalists are shown on the right. Our central
question: does this article need another source?

Some sources are used to provide factual details to establish the main event (e.g. the

“Statement”); or providing background (e.g. the “Report”) — a role we might be familiar

with from related NLP tasks (e.g. multi-document retrieval [261, 262]). Other sources play

a narrative role: they anticipate reactions (e.g. the “Order), provide anecdotes or give

alternate perspectives.

Finding these sources is a crucial part of the reporting process: news articles are driven

by the informational sources journalists use and retrieving sources takes considerable time.

Research has estimated that 30% of journalists’ time spent looking for sources and this is

the biggest factor separating novice and expert journalists [263, 264]. The practical task we

will center around in this section is as follows: imagine a retrieval system that can find

different sources for the journalist, as they are reporting. This system will understand

both the narrative and factual needs of the story (e.g. “contrasting voice”) as well as

how to find this source. Articles use 5–7 sources on average [202], and these sources are

interdependent. Thus deciding which mixtures of sources to use requires us to consider

sequences of actions. Additionally, the rewards governing source selection are complex

and poorly understood [24]. Reconsider the news story example given in the Preface, the

Snow Leopard story.1 It used the following sources: Brandie Smith (i.e. director of the

Smithsonian zoo), Robert Stone (i.e. former presidential advisor), the Holy Bible, and

1As a recap, the title of the story was: Leopards on the Potomac! Trump Is Delighted by Deal With Saudis
for Rare Cats. published June 4, 2025.
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Joseph Maldonado (i.e. subject of the Tiger King documentary). As we consider how a

source-finding tool might begin to recover this sequence of sources to aid a journalist, we are

confronted by the difficulty in even specifying why they were included. Is it, as has been

proposed for other multi-document retrieval systems: for diversity and coverage [14, 15, 13]?

Factuality [11, 12]? Interestingness, novelty or fun [265, 266, 267]? These explanations might

cover some of the sources in this trajectory, but not all. Clearly, we need to understand

complex, contextual, and variant rewards, making an emulation learning approach is essential

for this task. Let us formalize this approach now.

s1 s2 s3 g

a1 a2 a3

Get
source #1

Get
source #2

Get
source #3

Sources
{}

Sources
{1}

Sources
{1, 2}

News
article

Figure 3.2: Observability of the source-
finding task: We assume that each ac-
tion, at = Get source, successfully re-
trieves and obtains information from
a sources. The state-space, st, con-
tains all information gathered so far.
Only the news article, g, is observ-
able, and contains a representation
of accumulated information.

Source-Finding as Emulation Learning: Source-finding

requires us to push emulation further in this section

to consider longer action trajectories, τ ; no longer can

we simplify the creative task we consider to a horizon-

1 trajectory, as we did in Chapter 1. As shown in

Figure 3.2, we consider each action in source-finding,

a1, a2...an, to be a Get Source action. This is a composite

action — each at includes the following sub-steps:

(1) identify the informational needs of the story (2)

find the source that meets those needs (3) obtain

that information from the source. Once information

from the source is obtained, all information from

that source is added to the state-space, s1, s2, . . .. We

can only observe the final news article, g, which contains a representation of the all the

information gathered so far. In general, in this Chapter, we will assume that an inverse

function operating on just the document, i.e. qθ(τ |g), inferring only actions ã1, ã2 . . . that did

occur is enough to train robust policy models π̂(τ |x). This raises observability questions: in

Chapter 2, observing only actions that did occur was not enough to train generalizable π̂(τ |x)

functions: we also needed to make inferences about actions that did not occur. We assume
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Cheat-Sheet: Emulation Learning for Source-Finding

From the finished article g we infer the latent sequence of “get-source” actions to reproduce human-like
sourcing trajectories, given a story lead.

a at (action) — composite “Get Source” action (“identify need”→ “find source”→ “obtain info”).
s st (state) — accumulated state (all facts/sources gathered so far) observed only through the final

article’s content structure (§3, Fig. 3.2).
x x (starting context) — The initial query that starts the reporting process (e.g., first question, event

description, press release) (§3.3, §4.3.1.2).
τ τ (trajectory) — Sequence of sources chosen and added to a growing evidence base, used to write

the article (§3.3, §4.3.1.2).
g g (goal state) — The published news article whose content contains inferrable source details (§3).
q qθ(τ | g) (inverse model) — recovers specific sources (q1, q2, . . . used during reporting process.
π π(τ | x) (policy model) — drives “get source” actions at. Sub-policies: planner, πp, identify

information needs; executor πe retrieve sources; interviewer πi obtain information. Will compare to
π(llm), implicit policy from pretraining. (§3.3).

we do not need as complicated an approach for multiple reasons. Mostly, for convenience –

modeling counterfactuals in sequences is harder and the pool of potential sources is infinite,

compared with the closed sets of events x in 1-horizon trajectories we considered in Chapter

2. Secondly, we assume a larger equivalence space among source-finding actions compared

with news-finding: source A and B might have been chosen equally if they are similar (i.e.

across many factors), allowing observed actions to teach us more about unobserved than

in Chapter 2. Indeed, information-retrieval research treating unjudged items as unobserved

rather than negative yields stable models for such reasons [268]. Finally, state-of-the-art

offline RL avoids imputing outcomes for counterfactual actions, recognizing that such

imputations accumulate high variance over large horizons [269, 270, 271, 272].

1Other minor notation used throughout:

• qi: The source itself. at = qi typically used interchangeably.
• d(a): Discourse role of a source/action, or the narrative role fulfilled by the source. d(a) ∈ D (e.g., Main

Actor, Background, etc). (§3.4.1.2, §3.4.3.2).
• ν(si) narrative needs of the story, or ν(g) latent requirements a good story should satisfy (§3.4).
• ψ(τ ) — Schema-level signature (e.g., histogram over discourse roles/centrality)(§3.4).
• Lemul =D(ψ(τ ), ψ(Q)) — Emulation loss: distance between model vs. human discourse signatures (§3.4).

66



3.1 Source-Finding: A Study in how Information Complements

Chapter 3 Overview

In Chapter 3, Learning Action Trajectories via Emulation Learning, we will study how

longer action trajectories can be inferred and predicted; how action spaces can be

compared; and how policies π̂(θ|x) based on latent actions can be evaluated. This

section will unfold as follows. In Section 3.2, I describe how we train an inverse model,

qθ(τ |x, g) to reconstruct trajectories τ from articles g. I will prove these trajectories can

be learned – i.e. that they trajectories are composite and predictable. Then, in Section

3.3, we will use inferred trajectories, τ̂ , to test how well pretrained language models

can approximate policy functions π(τ |x). We conclude that policies learned during

pretraining models do not approximate human policies, and that they specifically are

less creative. Next, we begin to break apart the compositeness of the at =“Get Source”

action, which is composed of sub-steps: (1) identify the story’s sourcing needs (2) find

the right source (3) obtain information from the source. In Sections 3.4 I will describe

how we can learn better policies, π̂(τ |x), including by using higher-order planners

that first identify the story’s needs, then find the source. In Section 3.5 we will provide

metrics to justify some of the decisions we made in Section 3.4. And, finally, as a

bonus, I will show in Section 3.6 how, once we find sources, we can use an emulation

approach to train models that help us talk to and obtain information from sources.

Works Discussed:
▷ Spangher et al. (2023)“. Identifying Informational Sources in News Articles”. Proceedings of the 2023 Conference on Empirical

Methods in Natural Language Processing.

▷ Spangher et al. (2024)“. Do llms plan like human writers? comparing journalist coverage of press releases with llms”.

Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing.

▷ Spangher et al. (2025)“. A Novel Multi-Document Retrieval Benchmark: Journalist Source-Selection in Newswriting”.

Proceedings of the 4th International Workshop on Knowledge-Augmented Methods for Natural Language Processing

▷ Spangher et al. (2024)“. Explaining Mixtures of Sources in News Articles”

▷ Spangher et al. (2025)“. NewsInterview: a Dataset and a Playground to Evaluate LLMs’ Grounding Gap via Informational

Interviews”. Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
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3.2 Identifying Sources in News Articles and Testing Com-

positionality

Emulation Learning consists of two phases: Inverse Inference, or learning qθ(τ |g); and Policy

Learning, or learning π(τ |x). In this section, we will focus solely on the first phase, learning

qθ(τ |g). As shown in Figure 3.2, we assume the following observability in our system: g

is the published article, or goal-state. g contains partial information about the sources

used in the reporting process (τ = a1, a2, ...an). Previously, in Chapter 2, we learned qθ(τ |g)

indirectly using observation channels Mψ and po(x > x′). In this Chapter we choose to

directly train a single inverse-action function, qθ(τ |g). Through direct supervision, we can

identify sources used in news articles with high recall Recall(g) (even those expressed

implicitly in the final article g). We will describe this learning process now.

We approach this by representing a news article g as a set of sentences, g = {X1, ...Xn}

and a set of informational sources Q = {q1, ...qk}. We define an attribution function α that

maps each sentence to a subset of sources:2

α(Xi) ⊆ Q for Xi ∈ g

A sentence is attributable to a source if there is an explicit or implicit indication that the facts

in it came from that source. A sentence is not attributable to any source if the sentence

does not convey concrete facts (i.e. it conveys journalist-provided analysis, speculation, or

context), or if it cannot be determined where the facts originated.

Computing α(Xi) for each sentence yields a noisy proxy for the latent source-acquisition

trajectory τ , and thus informs our estimate of qθ(τ | g). Because α captures which sources

support which sentences but not when those sources were obtained, it does not recover

how τ = a1, a2, ...at is ordered directly. To induce a weak partial order ≺ over sources,

2Most sentences are attributed to only one source in the article, but some are attributed to several.
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we adopt simple, empirically motivated priors (e.g., earlier mentions are more likely to

have been obtained earlier; sources with more attributed sentences are more likely to have

been obtained earlier). We revisit and validate these priors in Section 3.2.2 and again in

Chapter 5 when introducing the NewsEdits dataset. For the remainder of this section, we

treat {α(Xi)}ni=1 as a sufficient surrogate of g for estimating qθ(τ | g) and leave explicit

ordering to later sections.

3.2.1 Source Attribution Modeling

Sources are people or organizations and are usually explicitly mentioned. They may

be named entities (e.g. “Laurent Lamothe,” in Table 3.1), or canonical indicators (e..g

“commission,” “authorities”) and they are not pronouns. In some cases, a sentence’s source

is not mentioned in the article but can still be determined if (1) the information can only

have come from a small number of commonly-used sources3 or (2) the information is

based on an eye-witness account by the journalist. See Table 3.2 for examples of these

latter two categories. In the first two rows, we give examples of sourced information that a

knowledgeable journalist could look up quickly. The third row shows a scene that could

only have been either directly observed, either in-person or via recording, and thus must

be sourced directly to the journalist.

Attributing information to sources is challenging: as shown in Tables 3.1 and 3.2, while

some attributions are identified via lexical cues (e.g. “said”), others are deeply implicit

(e.g. one would have to know that ordering a “curfew” creates a public record that can be

retrieved/verified)4. Previous modeling work, we show, has focused on the “easy” cases:

identifying attributions via quotes,5 resulting in high-precision, low recall techniques [276,

3Examples in this category include “the stock market,” “legislative/executive records,” “court filings.”
Trained journalists can tell with relative accuracy where this information came from.

4In one humorous example, a former Governor of New York was well known to call reporters after 5pm,
offer useful information (and colorful quotes), and then request to be off-the-record. New York media outlets
started referring to information from this governor as information from “an official in Albany”. Experienced
readers and fellow journalists were usually able to intuit who it was.

5By quote, we mean information derived from a person or a document – verbatim or paraphrased. Sourced
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Tourist visits have declined, and the Hong Kong stock market
has been falling for the past few weeks, but protesters called for
more action.

Published Work
Price Signal Statement

Mr. Trump was handed defeats in Pennsylvania, Arizona and
Michigan, where a state judge in Detroit rejected an unusual
Republican attempt to. . .

Lawsuit

Mr. Bannon, former chief strategist for President Trump, was
warmly applauded when he addressed the party congress of the
anti-immigrant National Front. . .

Direct Observation

Table 3.2: Example sentences from different articles where sources are implicit. Attribu-
tion is non-obvious and based on lexical cues: in the first two rows, we show sentences
where sourcing is implicit but where a trained journalist can deduce the source. In the last
row, we show a sourced sentence where the descriptive information could only have come
from a direct observation by the journalist. Bold names are the source attribution, when it
exists. In cases, not shown, where it does not exist, we label “passive voice”. Underline
indicates the specific information that was sourced. Colored annotations on the right are
high-level information channels.

277]. Identifying sources of information in a news article is relevant to many tasks in NLP:

misinformation detection [278], argumentation [279] and news discourse [130].

We split Source Attribution into two steps: detection (is the sentence attributable?) and

identification (what is that attribution?) because, in early trials, we find that using different

models for each step is more effective than modeling both jointly. Prior work in Source

Attribution primarily used hand-crafted rules [280], bootstrapping [281] and distance-

supervision [277] approaches to attribute sentences. Although such work has shown

impressive performance on curated datasets, they typically define a source’s informational

contribution rather narrowly (i.e. only direct or indirect quotes). So, we test several

variations of methods introduced in prior work on our dataset to confirm that these

categories are not implicitly attributed. For detection, a binary classification task, F1-score is

used. For identification, we use accuracy, or precision@1.

information is broader and includes actions by the journalist to uncover information: first-person observations,
analyses or experiments.
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Direct
Quote

Indirect
Quote

State-
ment

Email/
Social

Pub.
Work

Other Micro
Avg.

D
et
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n
f1

sc
or

e

Rules 1 64.7 69.3 81.2 76.2 72.7 37.4 59.1
Rules 2 71.3 79.8 89.8 82.1 79.2 32.5 68.8
Quootstrap 85.0 81.3 51.3 58.6 33.1 3.0 33.4
Sentence 91.0 98.7 94.1 92.7 85.4 61.4 87.1
Full-Doc 92.0 98.7 96.4 89.8 86.4 65.1 88.2

Id
en

tifi
ca

tio
n

A
cc

ur
ac

y
on

go
ld

-
la

be
le

d
so

ur
ce

d
se

nt
s

Rules 1 47.8 48.4 43.0 51.7 37.8 30.2 46.4
+coref 57.3 54.5 49.8 49.4 38.3 34.9 52.8

Rules 2 20.7 22.5 30.3 21.3 27.4 30.2 22.5
+coref 31.6 42.0 56.1 30.3 32.3 30.2 36.6

QuoteBank 9.9 16.0 16.4 17.7 4.3 0.5 5.5

SeqLabel 37.2 43.4 40.0 31.2 32.3 17.7 38.5
SpanDetect 61.1 59.5 67.6 44.4 51.6 36.5 59.5

+coref 51.2 56.8 60.6 79.0 54.6 42.6 53.6
GPT3 ft, Babbage 80.9 86.9 85.0 71.9 57.9 38.3 78.9

+coref 78.7 82.5 76.3 56.1 54.4 31.2 73.2
GPT3 ft, Curie 94.0 95.5 91.1 91.0 81.6 57.3 91.4

GPT3 ZS, DaVinci 70.9 58.8 72.5 43.1 54.6 47.6 58.5
+coref 66.9 57.6 61.9 20.2 42.6 51.4 55.4

GPT3 FS, DaVinci 74.9 56.5 70.1 52.3 49.4 82.8 61.6
+coref 70.0 55.6 72.7 50.5 48.8 60.7 58.6

Bo
th

A
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al
l

se
nt

s

GPT3 ft, Babbage 79.5 82.9 82.9 73.4 60.5 53.0 70.9
+Nones 82.4 84.8 85.9 73.4 61.0 64.5 73.1

GPT3 ft, Curie 90.4 90.7 89.9 91.1 78.0 68.9 80.0
+Nones 92.3 92.9 92.9 91.0 78.2 68.3 83.0

Table 3.3: Modeling results for two steps in Source Attribution: Detection (i.e. correctly
identifying source sentences) and Identification (i.e. correctly attributing sentences to
sources). Both refers to the end-to-end process: first identifying that a sentence is a
informed by a source and then identifying that source. ZS and FS refer to “Zero Shot” and
“Few Shot”, respectively. +coref refers to performing coreference resolution beforehand,
and universally hurts the model. +None refers to Identification models trained to assign
“None” to sentences without sources, possibly eliminating false positives introduced by
Detection. We can attribute sources with accuracy > 80.
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Baseline Methods

Rules 1 (R1): Co-Occurrence: We identify sentences where a source entity candidate co-

occurs with a speaking verb. For detection, any sentence that contains such a co-occurence

is considered a detected sentence. For attribution, we consider the identity of the source

entity. We use a list of 538 speaking verbs from Peperkamp and Berendt [280] along with

ones identified during annotation. We extract PERSON Named Entities and noun-phrase

signifiers using a lexicon (n=300) (e.g. “authorities”, “white house official”) extracted from

Newell, Margolin, and Ruths [282]’s dataset.

Rules 2 (R2): Governance: Expanding on R1, we parse syntactic dependencies in sentences

[283] to introduce additional heuristics. Specifically, we identify sentences where the name

is an nsubj dependency to a speaking verb governor. nsubj is a grammatical part-of-speech,

and a governor is a higher node in a syntactic parse tree.

Quootstrap: Pavllo, Piccardi, and West [281] created a bootstrapping algorithm to discover

lexical patterns indicative of sourcing. Contrasting with previous baselines, which hand-

crafted lexical rules, bootstrapping allowed researchers to learn large numbers of highly

specific patterns. Although the small size of our dataset compared with theirs prevents us

from extracting novel lexical patterns tailored to us, we use a set of 1,000 lexical patterns

provided by the authors6. Similary to R1 and R2, for detection, we consider all sentences

that match these 1,000 lexical rules to be “detected” sentences. For attribution, we examine

the entities these rules extract.

QuoteBank: In Vaucher et al. [277], authors train a BERT-based entity-extraction model

on distantly-supervised data [281]. This method is less lexically focused, and thus more

generalizable. They use their model to score and release a large corpus of documents. We

examine this corpus and select articles that are both in their corpus and in our annotation

set, finding 139 articles, and limit our evaluation to these.7 For detection, we examine all

6https://github.com/epfl-dlab/Quotebank/blob/main/quootstrap/resources/seedPatterns.txt
7We also discard articles where QuoteBank reported quotations or context that are not found in our articles,

because our corpus was created from NewsEdits, so it’s possible that the version of the articles that we
examined were different from theirs.
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sentences with attribution, and for identification, we match the source name with gold-labels.

Detection Methods

Sentence: We adapt a binary sentence classifier where each token in each sentence is

embedded using the BigBird-base transformer architecture [284]. Tokens are combined

via self attention to yield a sentence embedding and again to yield a document embedding.

Thus, each sentence is independent of the others.

Full-Doc: We use a similar architecture to the Sentence approach, but instead of embedding

tokens in each sentence separately, we embed tokens in the whole document, then split

into sentences and combine using self-attention. Thus, the sentences are not embedded

independently and are allowed to share information.

Identification Methods

Sequence Labeling: predicts whether each token in a document is a source-token or not.

We pass each document through BigBird-base to obtain token embeddings and then

use a token-level classifier. We experiment with inducing a curriculum by training on

shorter-documents first, and freezing layers 0-4 of the architecture.

Span Detection: predicts start and stop tokens of the sentence’s source. We use BigBird-base,

and separate start/stop-token classifiers [285]. We experiment with inducing decaying

reward around start/stop positions to reward near-misses, and expand the objective to

induce source salience as in Kirstain, Ram, and Levy [286], but find no improvement.

Generation: We formulate identification as open-ended generation and fine-tune GPT3

models to generate source-names. We use with the following prompt: “<article>To which

source can we attribute the sentence <sentence>?”. We need to include the whole

article in order to capture cases where a source is mentioned in another sentence. We

experiment with fine-tuning Babbage and Curie models, and testing zero- and few-shot for

DaVinci models. Because our prompt-query as it contains an entire article/source pair, we

have limited additional token-budget; so, for our few-shot setting, we give examples of

sentence/source pairs where the source is mentioned in the sentence. For +coref variations,
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Gold (Train) Gold (Test) Silver

# docs 1032 272 9051
# sent / doc 30 67.5 27
doc len (chars) 3952 7885 3984

# sources / doc 6.8 12.1 8.2
% sents sourced 47.7% 46.9% 57.4%
% sents, most-used source / doc 37.5% 28.1% 31.8%
% sents, least-used source / doc 5.9% 2.4% 6.7%
source entropy 1.6 2.1 1.8

# sources added per version n/a n/a +2
document sent. ↑ likely to be sourced 96th p 92th p 0th p

Table 3.4: Corpus-level statistics for our training, test, and silver-standard datasets. Shown
are averages across the entire corpus. Documents in the test set are longer than the training,
but the model seems to generalize well to the silver-standard corpus, as statistics match. “%
sents, top source” and “% sents, bot source” refer to the % of sourced sentences attributed
to the most- and least-used sources in a story. “# sources added / version” shows the
number of sources added to articles each news update; it is calculated using the NewsEdits
corpus which, as we will see Section 5.2, collects all versions of an article and can give us
a finer-grained sense of temporality. “sentence most likely to be sourced” refers to the
percentile sentence with the highest likelihood of being a sourced sentence.

we evaluate approaches on articles after resolving all coreferences using LingMess [287].

For +Nones variations, we additionally train our models to detect when sentences do not

contain sources. We use this as a further corrective to eliminate false positives introduced

during detection.

3.2.1.1 Source Attribution Results

As shown in Table 3.3, we find that the GPT3 Curie source-identification model paired

with the Full-Doc detection module in a pipeline performed best, achieving an attribution

accuracy of 83%. In the +None setting, both GPT3 Babbage and Curie can identify false

positives introduced by the detection stage and outperform their counterparts. Overall,

we find that resolving coreference does not improve performance, despite similarities

between the tasks. The poor performance of both rules-based approaches and QuoteBank,
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which also uses heuristics,8 indicates that simple lexical cues are insufficient. Although

QuoteBank authors reported it outperformed similar baselines as we tested [277], we

observe low performance from Quotebank [277], even in categories it is trained to detect.

GPT3 DaVinci zero-shot and few-shot greatly underperform fine-tuned models in almost

all categories (except “Other”). Further, we see very little improvement in the use of a

few-shot setup vs. zero-shot. This might be because the examples we give GPT3 are

sentence/source pairs, which do not correctly mimic our document-level source-attribution

task. We face shortcomings due to the document-level nature of our task: the token-budget

required to ask a document-level question severely limits our ability to do effective few-shot

document-level prompting. Approaches that condense prompts [288] might be helpful to

explore in future work. Further work is necessary to show that our models can transfer

well to different newspapers with different sourcing standards.

3.2.2 Insights from Source Analysis

Having built an attribution pipeline that performs reasonably well, we run our best-

performing attribution model across 9051 unlabeled documents from NewsEdits and extract

all sources. In this section, we explain derive insights into how sources are used in news

articles. For statistics guiding these insights, see in Table 3.4, which shows statistics

calculated on both our annotated dataset (“Gold Train” and “Gold Test” columns) and the

9051 documents we just described (“Silver” column). We ask two primary questions: how

much an article is sourced? and when are sources used in the reporting and writing process?

Insight #1: ∼ 50% of sentences are sourced, and sources are used unevenly. Most

articles, we find, attribute roughly half the information in their sentences to sources.

This indicates that the percentage of sources used is fairly consistent between longer

and shorter documents. So, as a document grows, it adds roughly an equal amount of

8Quotebank’s algorithm condenses input data to a BERT span-classifier by (1) looking for double-quotes
(2) identifying candidate speakers through a lookup table.
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sourced and unsourced content (e.g. explanations, analysis, predictions).9 We also find

that sources are used unevenly. The most-used source in each article contributes ∼ 35% of

sourced sentences, whereas the least-used source contributes∼ 5%. This shows a hierarchy

between major and minor sources used in reporting and suggests future work analyzing

the differences between these sources.
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Figure 3.3: Do more sources get
added to an article over time? We
show the number of sources in an ar-
ticle as it gets republished, based on
NewsEdits (Section 5.2) and find that
as news unfolds, sources get added.

Insight #2: Sources begin and end documents, and

are added while reporting Next we examine when

sources are used in the reporting process. We use the

NewsEdits dataset, which collects all revisions made

to news articles [289] (we will introduce NewsEdits

more formally in Chapter 5, Section 5.2). We find

that articles early in their publication cycle tend to

have fewer sources, and add on average two sources

per subsequent version, shown in Figure 3.3. This

indicates an avenue of future work: understanding

which kinds of sources get added in later versions

can help us recommend sources as the journalist is

writing. Finally, we also find, in terms of narrative

structure, that journalists tend to lead their stories with sourced information: the most

likely position for a source is the first sentence, the least likely position is the second. The

second-most likely position is the end of the document.10 11

9The only exception, we find, is very short documents (<200 words). Manual inspection of these documents
shows that they are usually breaking news alerts and take all their information from a single source.

10The sources might be used for different purposes: Spangher et al. [26] performed an analysis on news
articles’ narrative structure, and found that sentences conveying the Main Idea lead the article while sentences
conveying Evaluations or Predictions.

11A caveat to Table 3.4: many gold-labeled documents were parsed so the first sentence got split over
several sentences, which is why we observe the last sentences having highest sourcing, for example:
sents=[’BAGHDAD’, ’–’, ’Yesterday, the American military said’]. See [202].
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Other
News

Disaster Elections Labor Safety
To

p
A

bl
at

ed

FastText 66.1 65.8 69.8 68.8 68.0
+Source-Attribution 66.0 64.5 69.8 68.2 68.0

BigBird 74.2 68.4 78.3 74.0 78.1
+Source-Attribution 73.9 69.7 74.9 73.4 73.4

GPT3 ft, Babbage 78.3 75.5 81.5 72.7 80.0
+Source-Attribution 74.9 69.5 78.0 70.9 65.1

Se
co

nd
So

ur
ce

FastText 57.6 63.2 60.8 61.0 63.3
+Source-Attribution 57.8 63.2 61.1 62.3 64.1

BigBird 63.8 61.8 63.1 64.3 61.7
+Source-Attribution 65.1 69.7 65.7 64.9 62.5

GPT3 ft, Babbage 67.1 67.9 72.9 58.8 65.6
+Source-Attribution 65.4 65.1 68.0 65.9 66.7

A
ny

So
ur

ce

FastText 54.5 60.5 57.1 57.8 56.2
+Source-Attribution 54.8 59.2 57.6 56.5 56.2
BigBird 57.5 53.9 55.5 55.8 57.8
+Source-Attribution 59.4 55.3 60.6 60.4 56.2

GPT3 ft, Babbage 55.0 53.9 63.6 63.4 49.0
+Source-Attribution 59.0 56.1 61.3 39.3 51.7

N
ew

s
Ed

its

FastText 58.1 48.9 62.1 58.6 48.8
+Source-Attribution 56.8 55.8 61.9 61.2 49.6

BigBird 63.5 63.9 64.5 64.8 64.8
+Source-Attribution 69.4 65.3 62.6 60.4 64.2

GPT3 ft, Babbage 65.0 63.9 64.6 62.4 51.0
+Source-Attribution 64.0 56.1 61.3 39.3 51.7

Table 3.5: Results for Source Prediction, broken into four canonical news topics and ‘other.’
“Top Ablated” is our prediction task run on articles ablated by removing the source that
has the most sentences, ”Second Source” is where a source contributing more than 10% of
sentences is removed, and “Any Source” is where any source is randomly removed. The
NewsEdits task is to predict whether the article at time t will be added sources at time
t + 1. In the +Source-Attribution experiments, we add sourcing information, derived in
Section 3.2.1, to the input (see Section 3.2.3.2). For all of these tasks, our models were able
to significantly outperform random (50% acc.). In general, our expectations are confirmed
that: (a) harder tasks yield lower-accuracy results and (b) more powerful models improve
performance. This indicates that there is a pattern how sources are used in news writing.
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article
ablation (y = 1)

ablation (y = 0)
q1

q2

(a) Ablation probe for source predictability. Given an
original articleX with sources q1, q2, we construct ablated
documents X ′ by sampling with equal probability: a no-
op ablation X ′ = X \ {∅}, y = 0; and a source-removal
ablation X ′ = X \ {Xi} s.t. α(Xi)=q1 , y = 1.

article(t)
article(t+1) (y = 1)

q1

q1

q2

(b) NewsEdits probe Given an article
X(t) with source q1 and an updated
version X(t+1), we check whether an-
other source q2 was added. If so, y = 1
(shown); otherwise y = 0.

Figure 3.4: Source-Predictability Probes: We construct two supervised probes to test for
compositeness in τ . The goal in both probes is to train a binary classifier f to detect either
whether (1) a source is missing from X ′ or (2) a source will be added to X(t+1). Above,
circles q1, q2 denote attributed sources. We evaluate using F1(f): under null-hypothesis H0

(no coupling), F1(f) = 0.5; evidence of predictability corresponds to F1(f) > 0.5 underH1.

3.2.3 Source Compositionality

Having established that we can learn a well-performing attribution function α(Xi) by

annotating a large dataset and training state-of-the-art models, we have used α(Xi) to

identify a broad range of sources used in news articles. Before we move to learning policy

functions π(τ |g), in emulation in Sections 3.3 and 3.4, we wish to test that this is even

possible; that source finding is compositional and predictable. If sources are used together

predictably, then we have a hope, during policy learning later, of learning how to model

them sequentially.

3.2.3.1 Source Prediction: Problem Definition

To test compositeness, we introduce a probing task, source-prediction. Source-prediction helps

us probe whether the likelihood of predicting the correct source increases when we gain

knowledge of the other sources used in the article. In other words:

p(qi|qj) > p(qi)
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We define two probes to frame the source-prediction task, both shown in Figure 3.4b:

1. Ablation: Given an article (X,Q) with attribution α(Xi) ∀ Xi ∈ X , choose one source

qi ∈ Q. To generate positive examples (y = 1), we remove all sentences X \Xi where

qi ∈ α(Xi). Then, to generate negative examples (y = 0), we remove an equal number

of sentences where α(s) = {} (i.e. no source). This is shown in Figure 3.4a.

2. NewsEdits: We sample article-versions from NewsEdits, a corpus of news articles, with

all of their updates across time (introduced in Section 5.2). We identify articles where:

at time t, article(t), has sources q1, ...qt and the update article(t+1) adds a source, qt+1.

article(t) is labeled y = 1. If no source is added to article(t+1), then article(t) is labeled

y = 0.

The goal, for each probe, is to then train a binary classifier f to predict the assigned

labels. The strength of the classifier tells us, then, how predictable this task is. Our null

hypothesis H0 holds that there is no predictability between sources, so the performance of

the classifier f under H0 is F1(f) = 0.5. If we observe F1(f) > 0.5, then we reject H0 and

accept H1, that there is predictability among the sources. Each probe tests source usage in

different ways. Ablation assumes that the composition of sources in an article is cohesively

balanced, and induces reasoning about this balance. NewsEdits relaxes this assumption and

probes if this composition might change, either due to the article’s completeness, changing

world events that necessitate new sources, or some other factor.12

3.2.3.2 Dataset Construction and Modeling

We use our Source Attribution methods discussed in Section 3.2.1 to create large silver-

standard datasets in the following manner for our two primary experimental variants:

Ablation and NewsEdits. To interpret results in each variant better, we train a classifier to

12Spangher et al. [289] found that many news updates were factual and tied to event changes, indicating a
breaking news cycle.
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categorize articles into four topics plus one “other” topic13, based on articles in the New

York Times Annotated Corpus [291] with keyword sets corresponding to each topic.

Ablation We take 9051 silver-standard documents and design three variations of this task.

As shown in Table 3.4, articles tend to use sources lopsidedly: one source is usually primary.

Thus, we design Easy (Top Ablated, in Table 3.5), Medium (Second) and Hard (Any Source)

variations of our task. For Easy, we ablate from articles the source with the most sentences

attributed to it (i.e. n(q) := |{Xi ∈ X : α(Xi) = q }|, qtop := argmaxq∈Q n(q)). For Medium,

we randomly choose among the top three sources with the most sentences attributed to

them (i.e. (q(1), q(2), q(3)) :=
[
argsortq∈Q(−n(q))

]3
1
). And for Hard, we randomly choose

any of the sources to perform ablations. Again, once we choose the source q, we generate

two ablated documents per article by: (1) (y = 1): removing all sentences attributed to

q: X(1)(q) := X \ {Xi ∈ X : α(Xi) = q }. And (2) (y = 0) removing an equal number of

sentences from the document that are not attributed to any sources: X(0)(q) := X \ S,

where S ⊆ {Xi ∈ X : α(Xi) = ∅ }with |S| = |{Xi : α(Xi) = q }|.

NewsEdits We sample an additional 40, 000 articles from the NewsEdits corpora and

perform attribution on them. We sample versions pairs that have roughly the same number

of added, deleted and edited sentences in between versions in order to reduce possible

confounders — as we will see in Section 5.2, these edit-operations were predictable. We

identify article-version pairs where 1 or more sources were added between version article(t)

and article(t+1) and label article(t) these with y = 1. If 0 or 1 sources added to article(t+1),

then we label article(t) with y = 0.

Modeling We use three models: (1) FastText [292] for sentence classification, (2) A BigBird-

based model: we use BigBird with self-attention for document classification, similar

to Spangher et al. [289].14 Finally, (3) we fine-tune GPT3 Babbage to perform prompt-

13These four have been identified as especially socially valuable topics, or “beats,” due to their impact on
government responsiveness [290]

14Concretely, we obtain token embeddings of the entire document, which we combine for each sentence
using self-attention. We contextualize each sentence embedding using a shallow transformer architecture.
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completion for binary classification. For each model, we test two setups. First, we train

on the vanilla text of the document. Then, in the +Source-Attribution variants, we train by

appending each sentence’s source attribution to the end of it.15 The source annotations are

obtained from our attribution pipeline.

3.2.3.3 Results and Discussion

The results in Table 3.5 show that we are broadly able to predict when major sources

(Top, Secondary) are removed from articles, indicating that there is indeed compositionality,

or intention, in the way sources are chosen to appear together in news articles. The

primary source (Top)’s absence is the easiest to detect, indicating that many stories revolve

around a single source that adds crucial information. Secondary sources (Second) are still

predictable, showing that they serve an important role. Minor sources (Any)’s absence

are the hardest to predict and the least crucial to a story. Finally, source-addition across

article versions (see Section 5.2 for more details about this dataset) is the hardest to detect,

indicating that versions contain balanced compositions.

Overall, we find that our experiments are statistically significant from random (50% ac-

curacy) with t-test p < .01, potentially allowing us to reject the null hypothesis that positive

documents are indistinguishable from negative in both settings. Evidence of structure is di-

rectly actionable for policy learning over sets: when item utilities exhibit complementarities

and diversity pressures, set-aware objectives (e.g., submodular maximization or DPP-based

selection) provide faithful inductive biases and even greedy-approximation guarantees [293,

294, 295]. Moreover, if source use unfolds in stereotyped routines across article versions

(e.g., “establish claim”→ “countervoice”→ “context”), that is the hallmark of reusable

options or temporally abstract skills, for which hierarchical policies are well-motivated [296].

We finally combine these sentence embeddings using another self-attention layer to obtain a document
embedding for classification. We utilize curriculum learning based on document length, a linear loss-decay
schedule.

15Like so: <sent 1>. SOURCE: <source 1>. <sent 2> SOURCE: <source 2>... <sent n> SOURCE: <source
n>.
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In short, demonstrating predictability and compositeness supports the choice of structured

policy classes for selecting sources jointly.

Statistical significance does not preclude confounding, and both the Ablation and the

NewsEdits setups contain possible confounders. In the Ablation set up, we might be

inadvertently learning stylistic differences rather than source-based differences. To reduce

this risk, we investigate several factors. First, we consider whether lexical confounders,

such as speaking verbs, might be artificially removed in the ablated documents. We use

lexicons defined in our rules-based methods to measure the number of speaking verbs

in our dataset. We find a mean of n = [34, 32] speaking verbs per document in y = [0, 1]

classes in the Top case, n = [35, 34] in the Medium, and n = [35, 37] in Hard. None of

these differences are statistically significant. We also do not find statistically significant

differences between counts of named entities or source signifiers (defined in Section 4).

Finally, we create secondary test sets where y = 0 is non-ablated documents. This changes

the nature of the stylistic differences between y = 1 and y = 0 while not affecting sourcing

differences16. We rerun trials in the Top grouping, as this would show us the greatest

confounding effect, and find that the accuracy of our classifiers differs by within -/+3

points. In the NewsEdits setup, we take care to balance our dataset along axes where prior

work have found predictability. As we will show in Section 5.2, edit-operations17 could be

predicted. So, we balance for length, version number and edit operations.

Having attempted to address confounding in various ways in both experiments, we take

them together to indicate that, despite each probing different questions around sourcing,

there are patterns to the way sources are during the journalistic reporting process. To

illustrate, we find in Table 3.5 that Election coverage is the most easily predictable across all

tasks. This might be because of efforts to include both left-wing and right-wing voices. It

also might be because the cast of characters (e.g. campaign strategists, volunteers, voters)

16We do not want to train on such datasets, because there are statistically significant length differences and
other stylistic concerns ablated and non-ablated articles.

17E.g. Whether a sentence would be added in a subsequent version.
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stays relatively consistent across stories. Two additional findings are that (1) the tasks we

expect are harder do yield lower accuracies and, (2) larger GPT3-based language models

generally perform better. Although not especially surprising, it further confirms our

intuitions about what these tasks are probing. We were surprised to find that, in general,

adding additional information in both stages of this project, whether coreference in the

attribution stage or source information in the prediction stage, did not improve the models’

performance. (In contrast, adding source information to smaller language model, BigBird,

helped with harder tasks like the Medium, Hard and NewsEdits). We had hypothesized

that the signal introduced by this labeling would not harm the GPT3-based models, but

this was not the case. It could be that the larger models are already incorporating a notion

of coreference and attribution, and adding this information changed English grammar in a

way that harmed performance.

Why this matters for emulation and offline learning from human data Learning policies

from observational human data is famously sensitive to ambiguity and support mismatch.

Inverse RL highlights that many reward/process explanations can match the same ar-

tifacts, making the inverse problem non-unique [162]. Offline RL further warns that

distributional shift and unobserved confounding can render policy evaluation/learning

ill-posed without additional structure or assumptions [297, 298, 299]. Our probes act as

pre-tests for recoverability: if we can reliably tell when a major source is missing or predict a

soon-to-be-added source, then the observational record carries signal strong enough to

constrain the hypothesis space in practice. Conversely, if predictability were at chance,

that would be a red flag to augment the state with richer observables or to add interactive

data collection (e.g., DAgger-style interventions) before training policies [300]. Finally, the

“what source comes next?” framing parallels mature citation-recommendation settings

where future or missing references are predictably inferred from context and existing

citations [301, 302, 303], providing additional external evidence that this supervision signal

is learnable from text and partial source sets.
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3.3 Does Pretraining Implicitly Learn π(τ |x) for Source-

Finding?

In the previous section, we trained a sentence-level attribution function, α(Xi) using our

labeled dataset, which we then use to create an inverse function, qθ(τ |g). We then showed

that inferred human trajectories τ had compositeness and predictability. Before we learn

a policy function π̂(τ |g), we wish to test whether existing, emergent policy functions are

good enough, which we call π(llm)(τ |x). Indeed, pretrained LLMs are being used already

for these tasks; Petridis et al. [304], for instance, explored how well LLMs could suggest

sources and unique angles to cover press releases. As discussed in Section 1.1.1, important

questions remain about whether pretraining is enough to learn implicit human policies.

How often do these implicity-learned policies align with human values? Furthermore, if

we are to learn policy functions π(τ |x) to support complex, creative tasks in journalism,

how will we assess their performance? How can we adjust such decision-making to ensure

better alignment?

We seek, in this section, to build upon the previous section and demonstrate how a

benchmark can be made for more broadly developing AI approaches for aiding creative

tasks, ensuring they align with human values. In this section, we will use the terms policy,

π(τ |x) and planning relatively interchangeably; indeed we will sometimes refer to the

task of learning policies for complex, creative tasks as creative planning. Classically, policy

learning learns a mapping π(a | x, g) (or π(τ | x, g)) that selects actions without explicit

test-time search, whereas planning uses a model to reason over future consequences (e.g.,

via lookahead or search) before acting. In our setting, a story is developed as an open-loop

sequence of source choices τ that is evaluated primarily via the final artifact g. Under this

evaluation, any planner over trajectories induces a distribution π(τ | x, g), and sampling a

trajectory from a learned policy constitutes a plan. Because (i) we compare distributions

over τ conditioned on (x, g), (ii) the environment is effectively static within a single story

84



3.3 Does Pretraining Implicitly Learn π(τ |x) for Source-Finding?

cycle, and (iii) our metrics depend on the end-state g rather than mid-trajectory feedback,

we treat ‘planning” and “policy learning” interchangeably without loss of specificity.

To build our benchmark, we introduce a novel, broad dataset and compare the planning

decisions LLMs would make to the decisions humans have made in the past. Our work

represents a generalizable18 benchmark in creative planning tasks and can serve as a

template for creative planning evaluation going forward. We start by assembling a corpus

of press releases and news articles covering them, and identify articles that have effectively

covered these releases. Like city council meetings, explored earlier, press releases are an

ideal domain to explore, as they form a routine set of coverage goals pursued regularly by

journalists – and, as companies often lie, exaggerate and mislead in their press releases,

journalists are tasked with holding them to account with effective coverage. According to

Maat and Jong [305], effective coverage substantially challenges and contextualizes press

releases. We seek to focus on this subset as a basis for our benchmark, as this is likely a set

of sources that are utilized well to contextualize narratives. We begin by describing our

dataset collection first.

3.3.1 Press Release Dataset

Press releases offer an ideal window into the journalistic process. Press releases contain

potentially valuable information, but are often “spun” by their authors to portray events

positively [306]. “De-spinning” them involves challenging and contextualizing claims [305]

and often requires substantial work prior to writingHere, I describe how we construct

PressRelease, a large corpus of 650k news articles hyperlinking to 250k press releases.

PressRelease contains data collected via two approaches in order to avoid biases with either.

3.3.1.0.1 Press Releases← News Outlets, Hyperlinks: The first way we discover news

articles linking to press releases is to collect HTML of news articles, and find hyperlinks

18Most prior work in this vein has limited generalizability due to small sample sizes – e.g., Petridis et al.
[304] tested two articles with 12 participants.
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to known press release domains in these articles. We query Common Crawl for all URLs

from 9 major financial newspapersin all scrapes since 2021, resulting in 114 million URLs.

From these URLs, we discover 940,000 URLs of news articles, specifically, using a

supervised model by Welsh [307] to differentiate news article URLs from other pages on

news websites (e.g. login pages). Then, we find hyperlinks to press releases in these news

articles by finding all links to known press release websites.19 This yields 247,372 articles

covering 117,531 press releases. We retrieve the most recent version of the press release

page published before the news article from the Wayback Machine.20 We note that this

approach is biased in several ways. Firstly, we only capture the coverage decisions of the 9

major financial newspapers. Secondly, our technique to find hyperlinks to press releases,

via keyword filters, introduces noise. Thirdly, we are more likely to discover popular press

releases and less likely to discover ones that received less coverage. To address these biases,

we retrieve data in the opposite direction as well.

3.3.1.0.2 Press releases→ News Articles, Backlinks: Another way to find news articles

linking to press releases is to collect press releases and discover pages hyperlinking to

them using a backlinking service.21 First, we compile the subdomains of press release

offices for all 500 companies in the S&P 500, other organizations of interest (e.g. OpenAI,

SpaceX and Theranos) and specific, notable press releases.22 We query our backlinking

service for webpages linking to each of these subdomains. We again use Welsh [307]’s

model to identify backlinks to news articles. We retrieve 587,464 news articles and 176,777

press releases from the Wayback Machine. This approach, like the last, is also biased.

Despite now discovering news articles from a far wider array of news outlets, we now

19URLs containing the following phrases: ’prnewswire’, ’businesswire’, ’press’, ’release’,
’globenewswire’, ’news’, ’earnings’, ’call-transcript’ OR those with the following anchor text: ’press
release’, ’news release’, ’announce’, ’earnings call’.

20The Wayback Machine, https://archive.org/web/ [308], is a service that collects timestamped snapshots
of webpages, allowing users to retrieve past webpages.

21We use Moz, https://moz.com/.
22Including: Apple IPhone releases, OpenAI’s GPT2 and ChatGPT release notes, Facebook’s response to the

Cambridge Analytica Scandal, Equifax’s response to their 2016 data breach and other major corporate events,
including corporate scandals listed here: https://www.business.com/public-relations/business-lies/
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Press Release Text Article Text

(Theranos) Theranos will close our clinical
labs, impacting approximately 340 em-
ployees. We are profoundly grateful to
these teammates...

(Mashable) Few tears shed for E. Holmes
as Theranos bleeds jobs. Theranos shot
to fame in 2014. Then came an investi-
gation from WSJ...

(Tesla) There is a false allegation that
Tesla terminated employees in
response to a new union campaign.
These are the facts behind the event:
Tesla conducts performance review
cycles every six months...
Underperforming employees are let
go.

(WKWB) Employees said [they’re] tracked
down to the key stroke. “If you even
go to the bathroom, you won’t hit your
time goal...”

(CNBC) ...After hours on Thursday, Tesla
called [retaliation] allegations false, say-
ing [workers] had been terminated due
to poor performance.

(Goldman Sachs) We found reducing the
earnings gap for Black women will cre-
ate 1.2-1.7M U.S. jobs and increase GDP
by $300-450B.

(BE) Studies have found Black women’s
contributions to the U.S. economy as
consumers, entrepreneurs, and em-
ployees play a key factor...

Table 3.6: Examples of press releases (left) and news articles that cover them in our corpus,
PressReleases. Our corpus contains 656,000 news articles covering 250,000 press releases.
Each news article introduces an angle (i.e., specific focus) and uses sources (i.e., a person
or document contributing information) to support this angle. Approximately 70,000 press
releases, or 28% of our corpus, are covered more than once (as the Tesla example shows).
This indicates a rich corpus for ongoing research in narrative approaches.

overrepresent press releases from the top companies; we also miss press releases that are

not directly posted on their company websites. The combination of these two methods

of data collection is intended to reduce popularity biases any one direction imposes. To

further clean our dataset, we exclude press release/article pairs where the press release

link is in the bottom 50% of the article, and we exclude pairs that are published far apart

chronologically (>1 month difference.)23 These heuristics seek to exclude news articles

where the press release is not the main topic.24.

23We query the Wayback Machine to find the earliest collection timestamps of documents.
24We discuss additional processing steps in [273]
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3.3.1.1 Dataset Details

We are left with a total of 656,523 news articles and 250,224 press releases from both

directions. Examples of press releases and news articles matched in our dataset are shown

in Table 3.6. As can be seen, news articles directly comment on the press releases they

cover, often offering neutral or critical angles (i.e., specific areas of focus) and drawing

information from sources (i.e., people or documents contributing information). 70,062

press releases, or 28% of our dataset, are covered by more than one news article (a total

of 509,820 articles). This presents a rich corpus of multiply-covered stories: while in the

present section, we do not utilize this direction, it opens the door for future work analyzing

different coverage decisions.

3.3.2 Press Release Coverage as Contrastive Summarization

In order to narrow our benchmark to a targeted set of articles that require careful planning,

we seek to identify when a news article effectively covers a press release [305]. These are

articles, we reason, where decision-making was the most thoughtful: journalists are more

careful and thoughtful with their actions, we assume, when they are criticizing a press

release than simply paraphrasing or summarizing. Identifying effective coverage is not

trivial: many articles uncritically summarize press releases or use them peripherally in

larger narratives. We examine pairs of news articles and press releases, answering the

following two questions: (1) Is this news article substantially about this press release? (2)

Does this news article challenge the information in the press release? While many articles

discuss press releases, most of them simply repeat information from the release without

offering insights. After examining hundreds of examples, we devise novel framework,

contrastive summarization, to describe “effective coverage”. A piece of text is a contrastive

summary if it not only conveys the information in a source document, but contextualizes

and challenges it.
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Can we automatically detect when a piece of text is a contrastive summary? To do so,

we represent each press release and news article as sequences of sentences, P⃗ = p1, ...pn,

N⃗ = n1, ...nm, respectively. We establish the following two criteria:

1. Criteria # 1: N⃗ contextualizes P⃗ if:∑
j=1,...n P (references|N⃗ , pj) > λ1.

2. Criteria # 2: N⃗ challenges P⃗ if:∑
j=1,...,n P (contradicts|N⃗ , pj) > λ2.

We define “references” (or “contradicts”) as 1 if any sentence in N⃗ references (or

contradicts) pj , 0 otherwise. Viewed in an NLI framework [309], “contradicts” is as defined

in NLI, and “references” = [“entails” ∨ “contradicts”]. We expect this approach can get us

close to our goal of discovering press releases that are substantially covered and challenged by

news articles. A press release is substantially covered if enough of its information is factually

consistent or contradicted by the news article. It’s substantially challenged if enough of its

sentences are contradicted by the news article. Laban et al. [310] found that aggregating

sentence-level NLI relations to the document-level improved factual consistency estimation.

We take a nearly identical approach to the one shown in their work.25 First, we calculate

sentence-level NLI relations, p(y|pi, nj), between all P⃗ × N⃗ sentence pairs. Then, we average

the top-kinner relations for each pi, generating a pi-level score. Finally, we average the

top-kouter pi-level scores. kinner is the number of times each press release sentence should

be referenced before it is “covered”, and kouter is the number of sentences that need to by

“covered” to consider the entire press release to be substantially covered. Using NLI to

identify press release/news article coverage pairs provides a computationally cheap and

scalable method.
25The only difference being that we also consider the contradiction relation, whereas they only consider

entailment.
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Q1: Does article cover press release?

LogReg/MLP/Hist 72.1 / 72.9 / 79.0
+coref 74.6 / 75.2 / 80.5

Q2: Does article challenge press release?

LogReg/MLP/Hist. 60.3 / 62.9 / 69.4
+coref 61.2 / 62.4 / 73.0

Table 3.7: F1-scores for our classifiers, based on document-level NLI scores, to capture
critical coverage in news articles covering press releases. We label press releases and news
articles for whether they cover and challenge the press release. +coref resolution is found
to increase performance in both categories.

3.3.2.1 Detecting Contrastive Summaries

To train a model to detect when a news article contrastively summarizes a press release,

we annotate 1,100 pairs of articles and press releases with the two questions posed at

the beginning of this section. Our annotations are done by two PhD students, where

the first annotated all documents and The second doubly-annotated 50 articles, from

which an agreement κ > 0.8 is calculated. We divide these documents into a 80/10/10%

train/val/test split. We test the variations: We test resolving coreferences in each document,

(+coref ).26 Coreference resolution can generate sharper predictions by incorporating more

context into a sentence [1]. We also try three different classifiers: Logistic Regression

(LogReg), a multilevel perceptron with l levels (MLP), and a binned-MLP (Hist), introduced

in Laban et al. [310].

Table 3.7 shows how well we can detect contrastive summarization in press release-article

pairs. We find that Hist+coref performed best, with 73.0 F1. Laban et al. [310] noted

that the histogram approach likely reduces the effect of outlier NLI scores. See [273] for

more experiments. Following this, we apply Hist+coref to our entire PressRelease corpus,

obtaining Doc-Level NLI scores for all pairs of articles and press releases in PressRelease. In

the next section, we describe three primary insights we gain from analyzing these scores.

26Using LingMess [311]
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Corr. w # Sources / Doc

Contradiction 0.50
Entailment 0.29
Neutral -0.50

Table 3.8: Correlation between doc-level NLI labels and the # sources in the article. Sources
extracted via Spangher et al. [1]’s source-attribution pipeline.

Corr with Creativity
Angle Source

Contradiction 0.29 0.10
Entailment 0.27 0.03
Neutral -0.07 -0.11

Table 3.9: Correlation between doc-level NLI labels and the creativity of planning steps
journalists took (see Section 3.3.3.2 for more information about creativity measurement).

Each insight sheds more light into how journalists cover press releases.

3.3.2.2 Analysis of Press Releases and News Articles

We frame three insights to explain more about what effective coverage entails. These insights

lay the groundwork for our benchmark to assess implicit policy functions π(llm)(τ |x) learned

during pretraining, discussed in the next section.

Corr. w Contra.

Person-derived Quotes 0.38
Published Work/Press Report 0.30
Email/Social Media Post 0.25
Statement/Public Speech 0.25
Proposal/Order/Law 0.25
Court Proceeding 0.18

Table 3.10: Correlation between the level of contradiction between a news article and press
release and the types of sources used in the news article. Types defined by [1].
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Insight #1: Effective news coverage incorporates both contextualization and challenging

statements. Our first insight is that NLI-based classifiers can be useful for the task of

identifying effective coverage. This is not entirely obvious: NLI classification is noisy [312]

and contradiction relations might exist not only in directly opposing statements, but in

ones that are orthogonal or slightly off-topic [313]. However, our strong results on a large

annotated dataset – our annotators were instructed to determine whether a news article

effectively covers a press release – indicate that this method is effective. Our performance

results, between 70-80 F1-score, are within range of Laban et al. [310] (66.4-89.5 F1 across 6

benchmarks), who first used NLI to evaluate vanilla summaries. That a similar methodology

can work for both tasks emphasizes the relatedness of the two: identifying effective coverage

is a version of identifying a summary. Thus, we call our task contrastive summarization, to

describe the task of condensing and challenging information in a document.

Insight #2: Articles that contradict and entail press releases (1) take more creative

angles and (2) use more sources. We first noticed that articles with more creative angles27

contradict and entail press releases more, as shown in Table 3.9. In order to further explore

these kinds of articles, we analyze the sources they used. Spangher et al. [1] developed

methods to identify informational sources mentioned in news articles. We utilize this work

to identify sources in our corpus: as shown in Table 3.6, examples of sources we identify

include a “union”, an “employee” or a “study”. We find that most news articles in our

corpus use between 2 to 7 different sources, corresponding to Spangher et al. [1]’s findings.

Next, we correlate the number of sources in an article to the degree to which it contradicts

or entails a press release. Interestingly, news articles that contradict press releases more also

use more sources.28 Table 3.8 shows a strong correlation of r = .5 between document-level

contradiction and # sources. Articles in the top quartile of contradiction scores (i.e., > .78)

using a median of 9 sources, while articles in the bottom quartile use 3.

27Our methods for measuring creativity is defined further in Section 3.3.3.2.
28Doc-Level scores are calculated using +coref articles according to kinner and kouter thresholds from the

last line in Table 3.7. See [273].
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Figure 3.5: Probing LLM’s Planning Abilities: To assess how well LLMs might assist in
the planning stages of article-writing, we attempt to compare the plans suggested by an
LLM with the steps human journalists actually took during reporting. We infer these steps
from the final article. In (1) “Generating an LLM plan”, the LLM is asked to suggest angles
and sources to pursue. In (2) “Assessing the human’s steps”, we infer the steps the human
took while writing the article by analyzing completed articles using LLMs. Finally, in (3)
“Comparing”, we compare how much of the LLM’s plan aligns with τ taken by humans.

Insight #3: News articles that contradict press releases more use more resource-intensive

sources. Of the kinds of sources used in news articles, the majority are either Quotes, 40%,

(i.e., information derived directly from people the reporter spoke to), or Press Reports, 23%

(i.e., information from other news articles). We obtain these labels by scoring our documents

using models trained and described by Spangher et al. [314]. As shown in Table 3.10, the use

of Quotes, or person-derived information, is correlated more with Contradictory articles.

Quotes are typically more resource-intensive to obtain than information derived from

other news articles. A reporter usually obtains quotes through personal conversations with

sources [315]; this is a longer process than simply deriving information from other news

articles [316]. Additionally, in terms of the distribution of sources used in each article, Court

Proceedings and Proposal/Order/Laws are overrepresented in Contradictory articles:

they are 124% and 112% more likely to be used than in the average article. In general, these

kinds of sources require journalistic expertise to assess and integrate [317], and might offer

more interesting angles.
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Take-away: Taken together, our three insights suggest that any approach to assisting

journalists in covering press releases must have an emphasis on (1) suggesting directions

for contrastive summaries and (2) incorporating numerous sources. We take these insights

forward into the next section, where we assess the abilities of LLMs to assist journalists.

3.3.3 LLM-Based Creative Planning

Based on the insights in the previous section, we now study how LLMs might assist

journalists. Specifically, we ask: How well can an LLM (1) provide a starting-point, or an

“angle”, for a contrastive summary and (2) How well can an LLM suggest useful kinds of sources to

utilize? Petridis et al. [304] explored how LLMs can aid press release coverage. The authors

used GPT-3.5 to identify potential controversies, identify areas to investigate, and ideate

potential negative outcomes. They showed that LLMs serve as useful creative tools for

journalists, reducing the cognitive load of consuming press releases. While promising, their

sample was small: they tested 2 press releases and collected feedback from 12 journalists.

With our dataset, PressReleases, we are able to conduct a more comprehensive experiment

to benchmark LLMs planning abilities. In this section, we identify 300 critical news articles

and the press releases they cover. We compare plans generated by LLMs with the plans

pursued by human journalists: such an approach, along with recent work [318], is part of

an emerging template for comparing LLM creativity with human creativity and studying

how LLMs might be used in human-in-the-loop creative pipelines.

3.3.3.1 Experimental Design

We sample 300 press releases and articles scoring in the top 10% of contrastive summa-

rization scores (identified by Hist.+coref in the previous section). We manually verify

each to be true example of effective coverage. By implication, these are press releases that

contained ample material for human journalists to criticize. We use these to explore the

critical directions LLMs will take. Figure 3.5 shows our overall process. In the first step, (1)
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Angle Source
Prec Recall F1 Prec Recall F1

zero-shot

mixtral-8x7b 35.1 24.5 28.1 15.7 16.3 14.7
command-r-35b 57.2 61.4 57.0 28.5 26.2 25.1
gpt3.5 56.3 54.0 52.7 23.8 15.5 17.8
gpt4 53.6 63.4 56.3 23.2 21.5 21.2

few-shot

mixtral-8x7b 40.8 28.9 31.8 17.3 13.3 13.7
command-r-35b 55.7 60.0 56.1 21.2 21.7 20.1
gpt3.5 53.3 51.0 48.7 20.8 15.1 14.8
gpt4 51.6 59.3 53.4 19.5 17.9 17.8

fine-tuned gpt3.5 67.6 62.7 63.6 31.9 27.5 27.9

Table 3.11: The plans and suggestions made by LLMs for covering press releases do not
align with human journalists. Precision is the number of items from the plan that the
journalist actually pursued (averaged per press release). Average Recall is the number of
items from the human-written article also suggested by the plan (averaged across news
article). Angle is suggestions for directions to pursue, [304]. Source is suggestions for
sources to speak with, in general terms (e.g. “a manager at the plant”, “an industry
expert”.)

LLM as a planner, we give an LLM the press release, mimicking an environment where the

LLM is a creative aide. We prompt an LLM to “de-spin” the press release, or identify where

it portrays the described events in an overly positive light, and suggest potential directions

and sources to pursue. 29 Our angle prompt builds off Petridis et al. [304], however, our

source prompt is novel, given the importance attributed to sources in Section 3.3.2. Next,

(2) Human as a planner, we use another LLM to assess what the human actually did in their

reporting. Finally, (3) Comparing, we assess how the LLM plans are similar or different

from the human plans.

29We keep these sources as generic sources, e.g. “a federal administrator with knowledge of the FDA
approval process”, not a specific person.
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Description More Detail

1 Directly related the press release and support-
ing it’s contents.

Can be derived just by summarizing a point
in the press release.

2 Related to the press release but questioning
it’s points.

Little more than a simple pattern-based con-
tradiction to a point in the press release.

3 Takes an angle outside of the press release,
but relatively limited.

Can be a generic, larger-trend kind of contra-
diction.

4 Adds substantial and less obvious context or
history.

Substantial knowledge of prior coverage and
company awareness involved in making
this choice.

5 Entirely new direction. Substantial investigatory work was involved
even to make this suggestion.

Table 3.12: Description of the 5-point creativity scale that we used to evaluate decisions
made while covering press releases. Based on [321], our scale captures different levels of
creative ideation: direct engagement with the press release (1-2), contextual/trend-level
rebuttals (3-4) substantial and novel investigatory directions.

3.3.3.2 Models and Evaluations

We consider two pre-trained closed models (GPT3.5 and GPT430) and two high-performing

open-source models (Mixtral [319] and Command-R [320]). We conduct experiments in 3

different settings: Zero-shot, where the LLM is given the press release and definitions for

“angle” and “source”, and asked to generate plans. Few-shot, where the LLM is given 6

examples of press release summaries31 and the human-written plans.32 Finally, we fine-tune

GPT3.533 on a training set composed of press releases paired with human plans. We give

full prompts for all LLM queries run in this paper in [273].

3.3.3.2.1 Evaluation 1: Precision/Recall of LLM Plans We first analyze plans made by

humans: we extract sources used in human-written news articles with models trained

by Spangher et al. [1]. Then, we give GPT4, our strongest LLM, the press release and

30gpt-4-0125-preview and gpt-3.5-turbo-0125, as of February 9th, 2024.
31We use summaries to inform our few-shot examples because full press releases are too long for context.
32We manually write the summaries and the plans.
33Using OpenAI’s fine-tuning API: https://platform.openai.com/docs/guides/fine-tuning
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human-written news article and ask GPT4 to infer the angle that the author took. We

manually validate a sample of 50 such angles and do not find any examples we disagree

with. Finally, we use GPT4 to check how the sources and the angle proposed by the

LLMs match the steps taken by the journalist. From this, we calculate Precision/Recall per

document, which we average across the corpus.

3.3.3.2.2 Evaluation 2: Creativity of the Plans We recruit two journalists as annotators

to measure the creativity of the plans pursued both by the LLMs and the article authors.

We develop a 5-point scale, inspired by Nylund [321], who studied the journalistic ideation

processes. They found that journalists engaged in processes of new-material ingestion,

brainstorming in meetings to assess coverage trends, and individual ideation/investigation.

In our scale, scores of 1-2 capture “ingestion”, or a simplistic engagement and surface-level

rebuttals of the press release; scores of 3-4 capture “trend analysis”, or bigger-picture

rebuttals; scores of 5 capture novel directions.34

3.3.3.3 Results comparing π(llm)(τ |x) with π∗(τ |x)

Table 3.11 shows the results of our matching experiment. We find that LLMs struggle

to match the approaches taken by human journalists, but LLMs are better at suggesting

angles than source ideas. Few-shot demonstrations do not seem to improve performance,

in fact, we observe either neutral or declining performance. Fine-tuning, on the other hand,

substantially improves the performance of GPT3.5, improving to 63.6 average recall for

Angle suggestions and 27.9 average recall for Source suggestions, a 10-point increase in

both categories. We manually annotate 60 samples from the LLM matching to see if we

concur with its annotations. We find an accuracy rate of 77%, or a κ = 0.5435.

We observe slight different results for creativity. As shown in Figure 3.6a, creativity

is overall lower for all categories of LLM: zero-shot, few-shot, and fine-tuning. However,

34We report our 5-point scale in Table 3.12.
35The cases of disagreement we found were either when the LLMs plans were too vague, or contained

multiple different suggestions: we usually marked these “no” while the LLM marked them “yes”.
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(a) Average creativity of suggestions given by
a sample of LLMs (1–5). Human creativity is
evaluated on steps taken by actual journalists
during reporting.

(b) Average creativity of human ideas matched
to GPT-3.5 fine-tuned suggestions (“Recom-
mended by LLM”) vs. unmatched (“Missed by
LLM”). No significant difference for Angles;
significant difference for Sources.

Figure 3.6: Creativity evaluation results across models and match status.

in contrast to the prior experiment, we find that the differences between human/LLM

creativity are relatively similar for source plans and angles. Further, when we observe

the creativity of just the human plans that were retrieved by GPT3.5-fine-tuned, shown in

Figure 3.6b, we observe a similar pattern: the human plans matched to GPT3.5’s plans are,

overall, less creative than those that were not matched.

3.3.3.4 Discussion: LLMs do not plan like Human Writers

We assessed how LLMs can help journalists plan and write news articles. We constructed

a large corpus of news articles covering press releases to identify existing journalistic

practices and evaluate how LLMs could support those processes. We found that LLM

suggestions performed quite poorly compared with the reporting steps actually taken by

humans, both in terms of alignment as well as creativity. Does this suggest that LLMs are

poor planners in practice? Our benchmark provides a useful check for this question, but

we do not believe our experiments here are conclusive. Instead, we view our approach as a

first step: we compare basic prompt engineering with human actions that are observed

from final-draft writing. Clearly, the final drafts written by humans result from multistep,

iterative reporting, accumulated experience, and real-world knowledge.

Using human-decision making as a basis of comparison for LLMs is standard, even

in creative, open-ended tasks: e.g. story-planning [322], computational journalism [17, 1,
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289] and others [323]. If this problem were unlearnable (e.g. there were simply too many

angles to take, or so much prior knowledge needed to form any kind of plan), then we

would not see any improvement after fine-tuning. Crucially, the 10-point improvement we

observe from fine-tuning is evidence that there are learnable patterns. Existing research

into journalism pedagogy, which implies that observation of other journalists’ standard

practice is as important as gaining subject-matter expertise and conducting on-the-ground

work [324], should further support the hypothesis that planning is learnable.

However, the low scores after fine-tuning imply the need for more fundamental work.

Our current approach is naive: we expect LLMs to produce human-level plans with simple

prompting and no references, besides the press release. There are two major directions

for advancement in this task: (1) creativity-enhancing techniques: The creativity gap

we observed between humans and LLMs reflect similar findings in other recent research

related to creativity in AI [325, 326, 327, 328]. Chain-of-thought style prompts that explicitly

include creative planning steps [318, 219], or multi-LLM approaches [328] could improve

creativity. (2) identification-oriented grounding: we observe that many of failures in LLM

plans are rooted in LLMs lack of awareness of prior events, even high-profile events that

were within its training window (e.g. it interpreted many Theranos press releases without

any awareness of the company’s travails [329]). Retrieval-augmented generation [330] and

tool-based approaches [331] might yield improvement.

As LLMs are increasingly used for planning-oriented creative tasks [318], careful

analysis is required. Our goal in this work was to outline a novel task requiring planning

and affirm a basic to perform this analysis. We believe that our use of LLMs in article

planning represents an emerging and as-yet-underexplored application of LLMs to tasks

upstream of the final writing output. In these cases, the decisions made by the LLM might

one day have the ability to impact even more fundamental steps: which sources to talk to,

which angles to take, and which details to highlight. Professional journalists ground their

approach to these decisions in institutional values: fairness, reducing sourcing bias, and
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confirming details. Without carefully comparing pretrained π(llm)(τ |x) with human expert

π∗(τ |x), we risk disregarding these values.
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Figure 3.7: An overview of our planning-executor process for retrieving sources, demon-
strated on a story idea about the Flint Michigan crisis. The planner decides what is needed
for the story while the executor issues queries to retrieve sources.

3.4 Hierarchical Planning for Emulating Source-Finding

So far, we have demonstrated that we can make inferences about actions performed by

human journalists while reporting, qθ(τ |g), and we have shown that pretrained LLMs

struggle to replicate these actions, π(llm)(τ |x) ̸= π∗(τ |x). We are now ready to explore an

approach to learning a policy π̂(τ |x) for source-finding that introduces a novel view on

emulation that we have not yet explored: aligning distributional similarities between

trajectories from human expert trajectories, τ ∗, inferred via qθ(τ |g), and our model’s

policies τ̂ .

We will explore what specific distributions we will use to enforce similarities, but first,

let us defend it’s applicability in emulation learning (EL). In many human tasks, the target

is not a single “optimal” trajectory, but a policy that reproduces regularities of human

end states and their schema-level structure. Because many distinct trajectories can yield the

same article g (equifinality), our aim is often to recover policy behaviors that match the

distributional signatures of human work, rather than exact stepwise actions. This perspective

complements reward specification: instead of hand-craftingR, we aim to emulate the human
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policy that produced g by matching sufficient statistics derived from g. We conceptualize

our policy model π̂(τ |x) as driving a two-step process: a planner that determines what

kinds of sources are needed to complete the narrative, and an executor that actually finds

the needed source, by issuing queries to a retriever, as shown in Figure 3.7. The goal is

to emulate the human journalist by retrieving the same kinds of sources as the journalist

would of, thus demonstrating the ability to understand journalistic reasoning. We interpret

the planner’s choices as options (skills) and the executor’s queries as primitive actions within

those options. Let D denote the set of narrative functions sources take. The planner selects

ot ∈ D with policy µ(ot | st, x); the executor issues a retrieval action ar,t ∼ π(· | st, ot, x);

each option terminates with β(ot, st+1). This semi-MDP view provides a clean bridge

between qθ(τ | g) (inferred human plans) and π̂(τ |g) (emulated behavior).

More formally, we expand our action space a, beyond that defined at the start of this

Chapter (i.e. a1 =Get source #1...). We define actions ar as queries issued to the retriever (the

retriever and database are described in Section 4.3.1.2); thoughts at as any actions that do

directly interact with the retriever but help us determine what actions ar to take (these could

be reasoning tokens generated by an LLM, or predictions made by a secondary model).

This implies a hierarchical plan-and-execute process, where we realize our policy model

π(a|x) = π([at, ar] |x) = πplanner(at|x)πquery(ar|at, x). As before, the state space S to be the

sources retrieved so far during the trajectory. The goal state g is defined as the published

news article and, as before, we can extract a set of sources Q from g using the α(Xi) model

trained in in Section 3.2. Note that we are not trying to explicitly define a reward function,

or make any conditions on how the sources interact with each other. We simply assume,

based on predictability insights learned in Section 3.2.3, that our model will learn what

these interaction patterns are, yielding one kind of emulation loss, or goal-guided loss,

without explicit rewards. To understand this, let ψ(τ̂) summarize a learned trajectory into

schema-level signatures (i.e. a histogram over characteristics of each ai like, for example,

the narrative or discourse role of the source, see Section 1.2.2) and let ψ(Q) be the signature
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for an observed human trajectory, extracted from the human article g. With this approach,

we train our policy, π̂, to minimize a divergence between these summaries:

Lemul(π̂) = Ex Eτ∼π̂(·|x)
[
D
(
ψ(τ), ψ(Q)

)]
,

where D is a distributional distance. This encourages emulation of human discourse

structure without specifying explicit rewards.

3.4.1 Task and Dataset Creation

To set up our multi-document retrieval task, we wish to create a large retrieval database where

multiple “documents” are labeled as ground-truth for answering each query. To construct our task,

we apply the inverse qθ(τ |g) function described in Section 3.2 to extract sources from news

articles. We also generate queries from press releases, and finally a latent discourse structure,

described next. These steps follow EL’s backward lens: we start from end-states g and infer

latent structure (queries, sources, discourse roles) that plausibly produced g. Practically,

qθ(τ | g) is multi-modal; there are many valid τ for the same g. Thus, our schema learns

ensembles or summaries of τ (e.g., discourse mixtures) to avoid over-committing to a single

inferred path. (For a reminder on discourse and its role in emulation, see Section 1.4).

3.4.1.1 Dataset Creation

For each news article, we extract two items: (1) a query describing the initial question

answered by the journalist and (2) the set of informational sources used by the journalist.

The queries serve as the input to our retrieval problem, while the text of each source

serves as the ground truth matching “document” for each query. Following the definitions

in Spangher et al. [1], sources can be people (e.g., individuals interviewed or issuing

statements), documents (e.g., studies, legal documents), or datasets. We use a dataset of

articles released by Spangher et al. [273], described in Section 3.3, which includes 380,000
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news articles covering business press releases. From this dataset, we sample 50,000 articles

and their corresponding press releases.

Query Generation We provide an LLM with both the press release and the corresponding

news article, asking it to generate a query that might describe an initial question the

journalist had upon reading the press release, which led them to write the article.

Source Extraction First, we identify all informational sources in each news article using

models trained by Spangher et al. [1]. Then, we use Llama-3.1-70B36 to extract, for each

source, a stand-alone packet of information provided by that source37 “Standalone” means

that we can accurately identify the source later in the retrieval database. In total, we extract

400,000 sources, averaging approximately 8.3 sources per document.

3.4.1.2 Discourse Schema Generation

We seek to create a low-dimensional schema to describe our sources (in order to ground

our planner). We describe that process now. Inspired by Pham et al. [332], we first ask

an LLM to generate descriptive labels for the discourse role of each source, based on its

source extraction. This allows for a broad superset of labels (examples are given in [18].).

Then, we cluster these labels by (1) annotating pairs of labels with similarity judgments

using an LLM38, (2) using these annotations to train an SBERT embedding model [333],

and (3) clustering these embeddings using k-means. We identify eight distinct clusters

that represent different narrative roles (e.g., “Main Actor,” “Expert” “Background Info”).

Definitions for each discourse role are given in [18]. Additionally, we ask the LLM to

label the centrality of the source: “High” (the source is crucial to the narrative), “Medium”

(the source plays a significant role but is not necessary) and “Low” (the source could

be easily replaced with another source). We show the breakdown of Discourse Roles

by Centrality in Figure 3.8, and give additional analysis [18]. The discourse schema

36https://huggingface.co/meta-llama/Meta-Llama-3.1-70B-Instruct/
37This includes: resolving all coreferences and stating the full names of places, people, and events.
38Specifically, whether two different narrative roles generations are substantially the same or not.
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Label % Label %

Main Actor 19.0% Data 10.2%
Background 18.9% Confirm. 9.2%
Counter. 11.3% Analysis 7.8%
Anecdotes 10.8% Broaden. 1.6%
Expert 10.5% Subject 0.7%

Table 3.13: Distribution of Discourse Types
in News Articles. ‘Main Actor’ and ‘Back-
ground Info.’ are the most common, and
‘Subject’ the least common.

Figure 3.8: Proportion of sources within
each discourse role that occupy High,
Medium or Low Centrality in their sto-
ries.

serves as a low-dimensional macro-plan space that improves identifiability: rather than

reproducing token-level actions, π̂ matches stable invariants (role mixtures, centrality) that

qθ consistently attributes to g. This reduces variance from equifinality while preserving the

human-meaningful structure we seek to emulate.

3.4.2 Analysis

In order to better understand our dataset, we conduct a series of analyses to show how

sources are used in news writing by journalists. We make three insights.

Insight #1: Diversity and perspective alone do not characterize source inclusion Prior

research typically assumes that increasing diversity, in multi-document retrieval makes

retrieval more comprehensive [334, 335, 336]. However, we observe that, in news writing,

diversity is not always emphasized. While many sources are chosen for diverse information,

others are chosen specifically to confirm facts. For example, ∼10% of sources play a

Confirmation role, as in Table 3.13. What other theories exist to explain source-selection

criteria in journalism? Gans [337] suggests that supporting and opposing viewpoints are

selected to give a balanced narrative, suggesting that stance is a primary driver for source

selection. We conduct an analysis of sources’ stances in the narrative, using Ma et al.

[338]’s stance-detection method39. We find that while some sources do fit into the “for”

39Ma et al. [338] used Llama 3.1 with chain-of-thought prompts to detect stance; this scored highly on
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and “against” categories, this is not universally the case. Over 30% of sources take an

informational perspective without explicitly supporting or opposing any viewpoint40. This

suggests that source selection is more nuanced than the binary “for and against” model

implies. Journalists often include sources to provide context, background information, or

expert analysis, which may not directly relate to a polarized viewpoint [340].

Insight #2: Certain Kinds of Stories Use Different Kinds of Sources We examine

whether different types of news stories use sources differently. We manually identify

different kinds of coverage: investigative reports, breaking news, etc. We find that

different kinds coverage tend to be dominated by different source discourse roles. For

instance, investigative reports tend to include more “Expert Analysis” and “Background

Information” sources, while event coverage focuses on “Main Actors” and “Eyewitnesses.”

This analysis highlights that source selection is context-dependent and varies across

different types of journalism. Understanding these patterns can inform the development

of more sophisticated information retrieval systems that tailor source recommendations

based on the story type.

Insight #3: Sources used in multiple documents tend to have the same discourse roles.

We expected that sources would often be used in different roles in differet articles: for

instance, in Story #1, a police officer might be a “Main Actor”, in Story #2 the same police

officer might used for “Background info.” and in Story #3, for an “Anecdote”. We conduct

an analysis on all named sources that we name-match across two or more articles and

find that, on average, sources tend to be classified in the same role (sources have .43 gini

impurity41, .33 label inconsistency42, .95 entropy and .55 diversity43 across discourse roles).

popular stance benchmarks. Specifically, we prompt the model to classify the stance of each source as
“supporting,” “opposing,” or “neutral” with respect to the main event or topic of the article (see [339] for the
full prompt).

40Shown in [339]
41Gini impurity is measured as 1−

∑
i

(
li

ltotal

)2

, where li is the count of label i and ltotal is the sum of all
label counts

42Inconsistency is defined as 1− lmax/ltotal where lmax is the label with the maximum count.
43Where diversity is defined as lnumunique/ltotal
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One possible explanation is that journalists observe how other journalists use sources, and

use them similarly. This is a crucial insight: for simplicity, in the rest of the paper, we

assume that sources’ discourse role is only based on their original source-text.44

3.4.3 Discourse in Multi-Document Information Retrieval

Given our source and query dataset, described in Section 4.3.1.2, we now present our

methodology for discourse-aware multi-document retrieval. Motivated by our findings in

Section 3.4.2, we posit that incorporating discourse structures can significantly enhance

the retrieval process. In Section 3.4.3.2, we discuss how discourse information can inform

the retrieval process and in Section 3.4.3.3 we discuss ways to infer a story’s discourse

requirements.

3.4.3.1 A hierarchical approach to retrieving sources

We start by testing an interleaving retrieval approach to address this task [341]. In this

approach, an LLM is used to iteratively: (1) issue queries to a retriever (2) reason about the

sources returned (3) issue follow-up queries. Note that this is also relying on π(llm)(τ |x)

which is biased, as we explored in the previous section. Human validation, additionally,

shows that these interleaved queries frequently repeat, meander, or degenerate, ultimately

failing to capture the diversity of sources present in human writing (Section 3.4.5). We

hypothesize that a higher-level planner can guide the interleaving process towards diversity

while staying focused on the query. For example, we would like a higher-level planner to

predict: “this query is likely to answered by anecdotes, data, experts and actors” – we can then use

this plan to guide interleaving steps. Beyond instance-level relevance, our retrieval policy

should emulate human discourse composition. To make training such a planner tractable,

we first constrain the space of possible plans: we do this by developing a novel discourse

44We hold this constant to simplify computation. We acknowledge this is a limiting assumption, and in
follow-up work we will remove that assumption. Allowing sources to adapt their discourse roles dynamically
in response to novel, unseen queries is a crucial area for future research.
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schema (described in Section 3.4.1.2). With this lower-dimensional planning space in hand,

we train a high accuracy autoregressive planner and we evaluate both (i) set-level overlap

with ground-truth sources and (ii) schema alignment. We will describe this now.

3.4.3.2 Overview of Planned Interleaved Retrieval

Our retrieval framework consists of three main stages, illustrated in Figure 3.7: (1) Query

Planning, (2) Discourse-Specific Indexing and Retrieval, and (3) Re-ranking. We describe

each of these steps, focusing on how discourse roles can be involved.

Stage 1: Interleaved Querying In the first stage, we employ an LLM to generate queries

q1, ...qn sequentially in order to retrieve sources, as in Trivedi et al. [341]. Discourse-

awareness in this stage means the LLM can reference the discourse role of the source it

desires to obtain in query round qt while generating it’s query (we will discuss in Section

3.4.3.3 how we infer these discourse roles).

Stage 2: Indexing and Retrieval Given a query, qt, we then retrieve sources s1, ...sk relevant

to this query. Discourse-awareness in this stage means that the retrieval indices themselves

are filtered to discourse roles of sources in our corpus. Traditional multi-document retrieval

systems treat all documents equally [voorhees1999trec], but our approach organizes the

index into hierarchical, discourse-driven sub-indices. This stratification allows for more

targeted retrieval. When the LLM generates a query for a particular discourse role, it is

directed to the corresponding sub-index.

Stage 3: Re-ranking Finally, given a large set of sources s1, ...sm retrieved in the prior

steps, we re-rank them to surface the sources that are most relevant together. In this stage,

discourse awareness means that we take the most relevant documents within each discourse

category. This additional layer of categorization prioritizes documents that best fulfill the

intended narrative role. We use a re-ranking model that incorporates both relevance and

discourse compatibility, similar to the approach in Nogueira and Cho [342].
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Retriever
Strategy Overall Results Results by Cent. (F1)

Seq. A-priori Recall Prec. F1 High Med Low

BM25 [344] 0.00 0.00 0.00 0.00 0.00 0.00
DPR [223] 13.98 9.12 11.04 14.42 6.82 5.68
Interleaving [341] 25.81 27.04 26.34 37.66 22.60 14.37

PIR
✓ – 24.07 25.27 24.60 33.88 21.28 14.05
– ✓ 25.49 31.61 28.04 40.43 22.17 14.32
✓ ✓ 24.84 33.15** 28.12** 40.16 22.55 14.77

Oracle PIR – – 42.77 42.98 42.86 54.02 37.73 26.78

Table 3.14: We show results of running different retrieval strategies, in terms of Recall,
Precision, F1 score. Each strategy uses multiple retrievers. with the Oracle strategy
demonstrating the highest performance metrics. ** indicates significant increases at p < .01,
obtained via bootstrap resampling (b = 1, 000).

3.4.3.3 Two Different Planning Approaches

As outlined in the previous section, we can incorporate discourse information at each stage

in our retrieval process. However, left unexplained was how we would infer these discourse

roles. Now we discuss the two approaches we take.

Approach #1: Sequential Planning Here, the query-generator is informed of the possible

discourse categories, and is asked to pick the next discourse role that a story requires. In

other words, at turn t, the LLM views prior q1,...t−1 and discourse roles d1,...t−1 of retrievals,

and is asked to generate the next discourse role, dt that the story requires. By allowing an

LLM to sequentially generate roles, we hypothesize that we can introduce a human-like

planning ability – i.e. often humans do not know the exact discourse roles a story needs

until they get deeper in [343]. However, this approach relies the LLM’s inherent ability to

reason independently about discourse roles without explicit guidance. Prior studies have

shown that LLMs struggle with structural reasoning in complex tasks [26], suggesting that

this method may be less effective.

Approach #2: A-priori Planning In this approach, we train an auxiliary planner to predict
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Figure 3.9: Retrieval accuracy scores, broken down by different discourse types. As can be
seen, introducing my discourse planning has a greater impact on certain kinds of discourse
categories (e.g. Main Actor and Background Info.) compared with other discourse types
(e.g. “Experts”, “Anecdotes” and “Counterpoint”).

the entire distribution of discourse roles the document will take, a-priori, based on the

initial query. To do this, we cluster articles based on the distribution of source narrative

roles, using K-means clustering with k = 8 clusters and train a DistilBERT-base classifier

[345] to infer which story cluster a query belongs to. In other words, the a-prior planner

predicts the proportion of each discourse role expected in the final document, based on

the initial query. The predicted distribution is then provided to the LLM during the

query planning phase45 We train the auxiliary model on our dataset, achieving a macro

F1 score of 0.72 in classifying queries into the correct discourse clusters. The average KL

divergence between the predicted and true discourse distributions is 0.7, indicating a close

approximation.

3.4.4 Experiment Setup

Retriever We use SFR46: a 7B text-embedding model developed by Salesforce AI Research

that has demonstrated superior performance across multiple benchmarks. We choose

SFR as a powerful, large instruction-tuned model in order to understand richer and more

nuanced queries that we anticipate our task will require.

45Prompt example: “We expect this document will contain 50% Background, 30% Expert Analysis,
and 20% Main Actor information. Please choose the next discourse role you want to use.”

46https://huggingface.co/Salesforce/SFR-Embedding-2_R
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LLM As in Trivedi et al. [341], an LLM is used to plan and reason about the next query to

issue. As in the rest of the paper, we use Llama-3.1-70B.

Dataset We perform an 80/20 split for training and test sets. To construct the retrieval

index, we aggregate all sources from both sets and organize them according to discourse

role, such that each role is indexed separately. That is, for every query, a distinct retrieval

index is created for each type.

Baselines (1) BM25: a widely-used probabilistic retrieval framework, calculating the

relevance of documents to a query based on the frequency of query terms in each document.

(2) Dense Passage Retrieval (DPR) [223]: we fine-tune a transformer-based model47 to to

effectively capture semantic similarities beyond keyword matching. Fine-tuned DPR allows

us to test whether learned knowledge is more important than planning or reasoning. To

finetune DPR, we build a training dataset that including negative samples for in-batch

training [223]. For each positive pair of query qj and its relevant sources s+j , we include n

negative tools as negative samples. (3) Interleaving: we employ SFR with an identical setup

to Trivedi et al. [341] in order to test the ability of LLMs to reason about the needs of the

query in the absence of discourse labels.

Oracle Finally, to differentiate the role of discourse from these two noisy discourse inference

techniques, we test an oracle approach. In this approach, we provide the LLM with ground-

truth discourse labels extracted during our analysis. By supplying the actual distribution

of discourse roles present in the target documents, we assess how well the system can

perform when it has perfect knowledge of the sources’ discourse structure. Also, this

highlights potential improvements in retrieval planning and reasoning mechanisms.

3.4.4.1 Results

Our main finding is that incorporating discourse labels helps us retrieve sources with

significantly higher accuracy than baseline approaches (we find that these improvements

47https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
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are significant at p < .01 by running bootstrapped resamples with b = 1, 000). As evidenced

in Table 3.14, including discourse labels (with both a-priori and sequential strategies)

elevates the F1 score from 26.34% to 28.12% compared with the baseline Interleave. Further,

when incorporating oracle discourse information, the F1 score boosts up to 42.86%. This

indicates that discourse awareness and planning can provide insights into query needs.

The gains from discourse-aware planning indicate that matching human schema-level

invariants (role mixtures, centrality) provides a stronger training signal than token-level

query reasoning alone, aligning with the EL claim that emulating structure of end-states is a

powerful surrogate for explicit reward design.

Secondly, and intriguingly, our results suggest that an a-prior planning-based approach

has a more pronounced impact than sequential planning. According to the results in Table

3.14, employing a-priori planning without sequential planning48 yields an F1 score of 28.04%.

In contrast, combining both sequential and a-prior planning results in a slightly higher

F1 score of 28.12%. The small difference between these two trials suggests that a-priori

planning alone can substantially enhance retrieval effectiveness, potentially diminishing the

incremental benefits introduced by sequential planning. This contrasts with recent results

on more conventional QA-based IR tasks, where prompt-based planning strategies were

shown to significantly enhance retrieval performances [341, 346]. These results suggest

that our task possesses inherent differences. We do caveat our results with awareness that

our a-priori planner was trained while our sequential planner relied on LLM pretraining

(as did [341]). This suggests both that (1) a narrative-focused query objective is distinct

from purely informational query tasks like those studied previously, and (2) an a-prior

plan is useful in this task, indicating that templates exists that journalists follow.

48In other words, we simply retrieve k × n-rounds of candidates in the first round, without interleaving,
and then re-rank according to the a-priori predicted discourse distribution
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3.4.5 Discussion

We investigate why incorporating the discourse aspects into the systems enhances machine’s

source retrieval ability above the Interleaving approach.

Vanilla Interleaving Tends to Meander To explain the subpar performance of Interleaving,

which has shown state-of-the-art results on QA benchmarks, we examine multiple query

threads. Vanilla interleaving exhibits three notable failure modes. (1) Many queries

generated by the planner tend to restate the same objectives or focus on overly narrow

aspects of the broader topic without expanding into complementary dimensions (see

[18]). This restricts the planner’s ability to explore the full range of sources that a humans

typically consider (e.g. expert opinions, counterpoints, or data analysis), thus producing a

less well-rounded article. (2) Paradoxically, while interleaving often remains closely aligned

with the initial query’s intent, it also suffers from a tendency to drift when progressing

through subsequent queries. For instance, an initial focus on the societal consequences of an

issue may eventually lead to highly specific and less generalizable topics that deviate from

the core inquiry. (3) Finally, even when the planner maintains alignment with the initial

query, it often fails to explicitly request critical discourse roles, such as expert analyses or

contrasting viewpoints. Consequently, the output of vanilla interleaving lacks the depth

and balance.

Varied Centrality Improvements As shown in Table 3.14, the retrieval system shows marked

improvement in handling sources of varying centrality when informed by discourse roles,

particularly with the oracle setup. For high centrality sources, the Micro-F1 score leaps

from 37.66 to 54.02, indicating enhanced effectiveness in identifying and retrieving crucial

sources. Similarly, for low centrality sources, the Micro-F1 score rises from 14.37 to 26.78,

demonstrating the system’s expanded capability to incorporate less central, yet informative

perspectives into the narrative, thereby enriching the overall information retrieval process.

The improvement from our planning strategies, we observe, originates from the enhanced
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retrieval of more central sources; this indicates that our planning strategies effectively

identifies and prioritizes sources crucial for constructing detailed narratives. However,

while the system excels at retrieving high centrality sources, there is room for improvement

in capturing more medium and low centrality sources. Enhancing our planning to better

include these sources could further enrich the comprehensiveness of the IR process.

Discourse Role F1 Analysis As shown in Figure 3.9, incorporating discourse role

information significantly enhances retrieval performance across discourse roles. Since

qθ(τ | g) is multi-modal, any single decoded plan may be arbitrary. Training with

distributional targets mitigates overfitting to one inferred trajectory. By accounting for

the specific functions that sources play in constructing a narrative, the retrieval system

is more adept at identifying and selecting comprehensive information. The consistent

enhancements across diverse categories highlight the effectiveness of a discourse-aware

approach, suggesting that a nuanced understanding of narrative structures is essential for

optimizing retrieval outcomes in complex tasks such as multi-document source retrieval.

However, the selective improvements observed with our planning strategies indicate

that while these strategies are beneficial, their effectiveness varies across different source

categories. Significant gains are achieved in categories central to the narrative—such as

Main Actor and Background Information—where the discourse roles are closely aligned

with the main query and can be explicitly planned for. This suggests that planning strategies

are most effective when the narrative role is straightforward and directly related to the

primary focus of the query. In contrast, categories requiring nuanced understanding—such

as Analysis, Expert, Anecdotes, and Counterpoint—exhibit less improvement, implying

that current planning strategies may not fully capture the complexities inherent in these

discourse roles. Consequently, further refinement of these strategies is necessary to enhance

retrieval performance in categories that demand deeper contextual and interpretive analysis.

EL intentionally matches journalistic norms; this can also replicate undesirable sourcing

habits (e.g., under-represented voices). Auditing ĥϕ(x) against fairness constraints (role
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coverage, actor diversity) is therefore integral to safe deployment.

Retrieval Hyperparameters Our preliminary experiments reveal that the effectiveness of

discourse-aware retrieval is sensitive to the choice of k, the number of documents retrieved

per query. The benefits of incorporating discourse information, we find, become more

pronounced with larger k values. This is consistent with findings from Craswell et al.

[347], who note that re-ranking models have more impact when the initial retrieval set is

large. We attempt different methods for learning the ideal k per query: we train a Poisson

regression model using a simple Multilayer Perceptron (MLP) on SBERT embeddings [221].

However, the model achieves a low Pearson correlation of r = 0.35 between the predicted

and actual optimal k values. Overall, this additional planning step fails to measurably

impact performance. We leave this to future work.

While our current approach is specialized for journalistic source selection, we see the

potential applicability to other domains like scientific literature and legal document retrieval.

Adapting our method to these areas would involve redefining discourse categories relevant

to the target domain, retraining discourse-role classifiers on domain-specific corpora,

and validating with subject matter experts. Journalists often face time-constraints on the

number of sources they can talk to, making news article analysis a particularly tractable

domain to start in, but we anticipate that structured discursive frameworks common in

these domains would particularly benefit from our planned retrieval methodology.

Additionally, we recognize the computational overhead introduced by large models

such as Llama-3.1-70B and SFR-7B. In the future, we plan to explore smaller, distilled

models and computationally efficient techniques, including knowledge distillation and

quantization. Additionally, we look forward to testing additional baselines to validate our

approach, such as token-level dense retrievers [348, 349] or in-context learning approaches

[350, 351].
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3.5 Examining Discourse Schemas for Source-Finding

The introduction of discourse roles for sources in the previous section explores how a

schema can help us to tractably learn more human-like policies, π∗(τ |x), by introducing a

kind of emulation loss. As a recap, we introduced in Section 3.4 a ‘schema signature” σZ(·)

(i.e. the distribution over schema elements) to describe trajectories, τ and distribution-

minimizing loss between σZ(τ̂) of the learned policy’s trajectory τ̂ and σZ(τ ∗) the inferred

human trajectory τ ∗, called D(σZ(τ̂), σZ(τ
∗)). As our experiments showed, this approach

can deliver promising results in tasks, like source-finding, where goal-states have equifinality

(Section 3.4) and require compositional reasoning49 (Section 3.2.3).

Although we justified a schema-driven approach in Section 3.4 primarily on the basis

of computational tractability, let us now explore deeper theoretical and practical roles of

schemas in emulation learning. A primary goal in EL is to uncover new insights about human

behavior. When studying human actions, inferred from qθ(τ |x), we wonder: what drove

these actions? What role does higher-level decision-making and cognitive organization

have in behavioral trajectories? Classic theories in cognitive psychology and cognitive

control view schemas as being essential [354, 355, 356, 357]; they both constrain and enable

— they provide meta-structures to guide action and reasoning, while supporting flexible

recombination in novel contexts [358, 359]. Within narrative storytelling, discourse theories

show how higher-level structures (e.g., roles, relations, rhetorical functions) give structure

to utterances [360, 361, 362, 363, 364]; event-segmentation work further indicates that

humans perceive the world at boundaries that often coincide with schema transitions [365].

Hierarchical RL integrates these by treating abstract “options”, that organize exploration

and credit assignment, as schema-like macro-actions [366].

49I want to note that schema distribution-matching is not the only way to perform the policy-learning goals of
emulation learning. I have personally been very convinced by recent results in reasoning [352, 353] which
represents a way to incorporate latent. While schema-driven and, importantly, hierarchical policy learning,
has an important role in emulation learning, other approaches for policy learning explored in Chapters 1 and
2, like direct supervision or reward learning, especially if combined with steering reasoning, to me seem
more promising in their power and flexibly.
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Headline: NJ Schools Teach Climate Change at all Grade Levels

Michelle Liwacz asked her first graders: what can penguins do to adapt to a warming
Earth? ← potential labels: Academic, Neutral

Gabi, 7, said a few could live inside her fridge. ← potential labels: Unaffiliated, Neutral
Tammy Murphy, wife Governor Murphy, said climate change education was vital to

help students. ← potential labels: Government, Agree
Critics said young kids shouldn’t learn disputed science. ← labels: Unaffiliated,

Refute
A poll found that 70 percent of state residents supported climate change being taught

at schools. ← potential labels: Media, Agree

Table 3.15: Informational sources synthesized in a single news article. How would we choose
sources to tell this story? We show two different explanations, given by two competing
schemata: affiliation and stance. Our central questions: (1) Which schema best explains the
sources used in this story? (2) Can we predict, given a topic sentence, which schema to use?

Schemas can also act as competing hypotheses to explain observed human actions (e.g.,

in Section 3.4, “balance opposing viewpoints” vs. “establish background”). In source-finding

for example: why did the writer select sources q1, q2, q3... for document X? Let’s suppose

we observe an article on a controversial topic: some sources in the article “agree” with the

main topic and others “disagree”. Did the writer chose these sources on the basis of their

stance [367] (or their opinion-based support)? Or is there another another explanation, like

their discourse role (which describes their narrative function)? Each of these explanations

can (and, as we will see, will) be operationalized with different schemas. Now we arrive at a

fundamental problem: if we with to use schemas as both explanatory variables for human

behavior and constructive biases for learning policies, how can we know which schema is

the “right” schema? Schemas are typically latent: Rarely can we directly observe the schema

categories a datum belongs to. Intuitively, if we are trying to use schema signatures using

a schema that does not describe our data well, we might not be learning a useful π̂(τ |x).

In this section, I will directly address these questions. I will introduce methods to

compare schemas based on how well they explain observed data, inspired by on classical

approaches to validating topic models [368].
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Figure 3.10: We seek to infer unobserved plans, or schemata, in natural data, focusing on
one scenario: source-selection made by human journalists during news writing. Although
the reasons why sources are chosen are unobservable, we show that one explanation (in the
diagram, represented by squares: { , , }), is preferred over another (represented by
circles: { , , }) if it better predicts the observed text (conditional perplexity) and the
explanation is more internally consistent (posterior predictive). Our paper is divided into two
parts: in the first part (i.e. Section 3.5.1.2 and Section 3.5.2.2), we introduce the different
schemata we will compare – i.e. the top half of this diagram. In the first part (i.e. Section
3.5.3 and Section 3.5.4) we determine the right schema for a datum among competing
schemata – i.e. the bottom half of this diagram – and, given minimal information about a
document, we show that we can predict what schema should be used.

3.5.1 Schema Criticism as Latent-Plan Selection

To frame our methodology more directly in probabilistic graphical modeling terms [369],

we describe human source-finding as a generative process. (The second step of this story

might feel familiar; it is directly inspired by the Planned Interleaved Retrieval algorithm

discussed in Section 3.4.3.2.)

1. First, journalists plans how they will choose sources, Q, for their story. They do so by

selecting a schema, Z that describes which 1-of-k categories each sources will fall into.

2. Then, for each source to retrieve for the story, qi, they sample 1-of-k categories, zi,

from their schema. They use this selection to drive what source they find.

First, to clarify our terminology: in this section, we again use a specific and idiosyncratic

definition for plan. A plan, here, is a macro-level decision that governs a sequence of

actions. The plan functions, as per our generative story, by specifying how actions are
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categorized: this categorization drives how the journalist selects actions to perform. For

example, in Figure 3.15, there are two possible plans shown that the journalist made

before reporting (or, equivalently, there are two schemas that can categorize the sources

they used50). An affiliation-based schema categorizes sources into institutional affiliation:

“Academic”, “Government”, etc.; a stance-based schema categorizes sources as “Neutral”,

“Agree”, etc. Each different plan is possible; each plan is specified by a different schema. To

apply a schema to a document, we use our attribution function, α, from Section 3.2 (i.e.

α(Xi) = q ∈ QX for Xi ∈ X) which, to recap, maps each sentence Xi in document X to a

source QX = {q(X)
1 , ...q

(X)
k }51 We also train classifiers, c, to assign a type z ∈ Z from schema

Z to each source:

cZ(X
(q)
1 ⊕ ...⊕ X(q)

n ) = z ∈ Z (3.1)

taking as input a sequence of sentences attributed to source q(X) (the full set of schemas we

will consider are shown in Figure 3.11 and described in Section 3.5.1.2).

Typically, we note, when generative stories are told, as we have done, it’s in the service

of developing probabilistic graphical models (PGMs) to frame latent variable analysis

[369]; PGMs are not usually learned with supervised classifiers. The standard unsupervised

treatment of latent-variable PGMs learns the assignments z and the semantics of the latent

space Z jointly52. These latent spaces often do not correspond well to theoretical schemata

[371], on the other hand, supervised models trained on different schemata are challenging

to compare. A latent-variable framework here is ideal: comparing different graphical

50Indeed, plan in this section is used interchangeably with schema, the only syntactic difference is that
planning refers specifically to a-priori decision-making, while “applying the schema” refers to a-posteriori
categorization on the part of researchers.

51These are all sources are referenced explicitly or implicitly in X . There is no consideration of sources not
referenced in X (e.g. historical knowledge the journalist knew or background knowledge that the journalist
obtained through other channels).

52For instance, for a model pθ(x, z) = pθ(z) pθ(x | z), the EM algorithm [370] alternates between inferring
posteriors z over latent states, q(z | x, θ) ≈ pθ(z | x), and updating parameters, θ. The parameters θ determine
pθ(z) and the conditionals pθ(x | z), thereby endowing each latent state with its “meaning”. The data–wise
assignments z then “choose” a particular latent state for each x by maximizing (or soft–weighting by) the
posterior, e.g., z⋆(x) = argmaxz pθ(z | x).
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models [372, 373] necessitates comparing different schemata, as each run of a latent variable

model produces a different schema. Methods [374, 368], to evaluate which latent variable

assignment describes the observed data the best, give us an apples-to-apples approach for

determining which schema is better.

3.5.1.1 Comparing Plans, or Schemata

We can compare plans in two ways: (1) how well do they explain each observed document?

and (2) how structurally consistent are they?

Explainability A primary criterion for a plan is for it to explain the observed data well. To

measure this, we use conditional perplexity53

p(x|z) (3.2)

which measures the uncertainty of observed data, x, given a latent structure, z. Measuring

p(x|z) for different z (fixing x) allows us to compare z. Conditional perplexity is a novel

metric we introduce, inspired by metrics to evaluate latent unsupervised models, like the

“left-to-right” algorithm introduced by [368]. 54

Structural Likelihood: A second basic criterion for a latent structure to be useful is for it

be consistent, which is a predicate for learnability. We assess the consistency of a set of

assignments, z, by calculating the posterior predictive:

p(z|z−, x) (3.3)

[376] exploring using full joint distribution, p(z), latent perplexity, to evaluate the structure

text x produced by generative language models (“model criticism”). We simplify using

53We abuse notation here, using p as both probability and perplexity: p(x) = exp{−E log p(xi|x<i)}.
54We note that the term, conditional perplexity, was originally introduced by [375] to compare machine-

translation pairs. In their case, both x and z are observable; as such, they do not evaluate latent structures,
and their usage is not comparable to ours.
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Affiliation
Who the sources represent.

Academic
Government
Media
Other Group
Individual
Victim
Religious Group

Corporate
Industry Group
NGO
Political Group
Union
Witness

Role
What seat/power the sources hold.

Decision Maker
Informational
Participant
Representative

Identity
Which entity is speaking.

Named Group
Named Individual

Report/Document
Unnamed Group
Unnamed Individual

Vote/Poll

Argumentation
What kind of info.

Anecdote
Assumption
Common Ground
Other
Statistics
Testimony

NLI
Position of info.

Contradiction
Entailment
Neutral

Stance
Source’s opinion.

Affirm

Refute

Discuss

Neutral

Retrieval
Where the sourced material came from.

Background

Proposal/Law
Article
Court Proc.

Direct/Indirect Quote

Observation
Press Report
Statement

Email/Social Media

Discourse
Why info belongs in story.

Anecdote
Consequence
Context
Expectations

History
Prev. Event
Evaluation
Main Event

Figure 3.11: Label-sets for source-planning schemata. Extrinsic Source Schemata Affil-
iation, Role and Retrieval-method [1] capture characteristics of sources extrinsic to their
usage in the document. Functional Source Schemata: Argumentation [377], Discourse
[130] and Identity capture functional narrative role of sources. Debate-Oriented Schemata:
Natural Language Inference (NLI) [309] and Stance [367] capture the role of sources in
encompassing multiple sides. The three novel schemata we introduce are shown with
borders: Affiliation, Identity and Role. For definitions, see [314].

the full distribution and instead evaluate the conditional predictive to study document

structure. This, we find in early experiments, is easier to learn and thus helps us differentiate

different Z better (“schema criticism”).55 Now, we describe our schemata.

For an illustration of each metric, please refer to Figure 3.10. The overall goal of the

metrics is to determine which schema, or labeling of sources, best explains the observed news

article. As the figure shows, if schema A describes an article better than schema B, then

labels assigned to each source under schema A (e.g. in Figure 3.10: squares, , , )

will outperform labels assigned under Schema B (e.g. circles, , , ).

3.5.1.2 Source Schemata

Our schemata, or plans, are shown in Figure 3.11. We collect 8 schemata to compare,

including three we introduce: Identity, Affiliation and Role. Each schema provides a set of

55Our work is inspired by [1]’s work, where z was the choice of specific source, rather than a general
source-type. However, they had no concept of a “schema” to group sources.
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labels, which each describe sources used in a news article. Again, our hypothesis is that

the schema which best predicts the observed text of the article is the one the journalist most

likely adhered to while planning the article (Section 3.5.3). See [314] for more details and

definitions for each schema. We note that none of these schemata are complete and that

real-world plans likely have elements outside of any one schema (or are combinations of

multiple schema). However, this demonstration is important, we argue, to prove that we

can differentiate between purely latent plans in long-form text. We now introduce each

schema:

Debate-Oriented Schemata Both the Stance and NLI schemata are debate-oriented schemata.

They each capture the relation between the information a source provides and the main

idea of the article. NLI [309] captures factual relations between text, while Stance [367]

captures opinion-based relations . A text pair may be factually consistent and thus be

classified as “Entailment” under a NLI schema, but express different opinions and be

classified as “Refute” under Stance. In our setting, we relate article’s headline with the

source’s attributable information. These schemata say a writer uses sources for the purpose

of expanding or rebutting information in the narrative, offering different perspectives and

broadening the main idea.

Functional Source Schemata The following schemata: Argumentation, Discourse and Identity

all capture the role a source plays in the overall narrative construction of the article. For

instance, a source might provide a “Statistic” for a well-formed argument (Argumentation

[377]), or “Background” for a reader to help contextualize (Discourse [130]). Identity, a novel

schema, captures how the reader identifies the source. For example, a “Named Individual”

is identifiable to a reader, whereas an “Unnamed Individual” is not. As identified in [378]

and our journalist collaborators, this can be a strategic planning choice: some articles are

about sensitive topics and need unnamed sources.

Extrinsic Source Schemata Affiliation, Role and Retrieval schemata serve to characterize
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Schema Macro-F1 Schema Macro-F1

Argumentation 68.3 Retrieval 61.3
NLI 55.2 Identity 67.2
Stance 57.1 Affiliation 53.3
Discourse 56.1 Role 58.1

Table 3.16: Classification F1, macro-averaged, for the 8 schemata. We achieve moderate
classification scores for each of schema. When we compare schemata, we account for these
differences by introducing noise to higher-performing classifiers.

attributes of sources external to the news article. They either capture aspect about how

sources exist as entities in society (Affiliation, Role), or the informational channel through

which is was retrieved (Retrieval). Stories often implicate social groups [379], such as

“academia" or “government.” Those group identities are extrinsic to the story’s architecture

but important for the selection of sources. Sources may be selected because they represent

a group (i.e. Affiliation) or because their group position is important within the story’s

narrative (e.g. “participants” in the events, i.e. Role). Retrieval, introduced by [1], captures

the channel through which the information was found. Although these schemata are

news-focused, we challenge the reader to imagine ones that might exist in other fields. For

instance, a machine learning article might compare models selected via, say, a Community

schema: each from open-source, academic and industry research communities.

3.5.2 Building a Silver-Standard Dataset of Different Possible Plans

The schemata described in the previous section give us theoretical frameworks for iden-

tifying writers’ plans. To compare schemata and select the schema that best describes a

document, we must first create a dataset where informational sources are labeled according

to each schema. We describe that process in this section.
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3.5.2.1 Dataset Construction and Annotation

We use the NewsEdits dataset, discussed in Section 5.2, which consists of 4 million

news articles, and extract sources using a methodology developed by [1], which authors

established was state-of-the-art for this task. This dataset spans 12 different news sources

(e.g. BBC, NYTimes, etc.) over a period of 15 years (2006-2021). For our experiments, we

sample 90, 000 news articles that are long and contain more than 3 sources (on average,

the articles contain ∼ 7.5 sources). Then, we annotate to collect training data and build

classifiers to categorize these sources. We recruited two annotators, one an undergraduate

and the other a former journalist. The former journalist trained the undergraduate for

1 month to identify and label sources, then, they independently labeled 425 sources in

50 articles with each schema to calculate agreement, scoring κ = .63, .76, .84 on Affiliation,

Role and Identity labels. They then labeled 4,922 sources in 600 articles with each schema,

labeling roughly equal amounts. Finally, they jointly labeled 100 sources in 25 documents

with the other schemata for evaluation data over 1 month, with κ ≥ .54, all in the range of

moderate to substantial agreement [380].

3.5.2.2 Training Classifiers to Label Sources

We train classifiers to label sources under each schema. Unless specified, we use a sequence

classifier using RoBERTa-base with self-attention pooling, as in [145]. We deliberately

chose smaller models to scale to large amounts of articles. We will open-source all of the

classifiers trained in this paper.

Affiliation, Role, Identity We use our annotations to train classifiers which take as input all

sentences attributable to source q and output a label in each schema, or p(t|s(q)1 ⊕ ...⊕ s
(q)
n ).

Argumentation, Retrieval, Discourse We use datasets, without modification, that were

directly released by the authors. Each is labeled on a sentence-level, on news and opinion

datasets. We train classifiers to label each sentence of the news article, s. Then, for each
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Conditional Perplexity p(x|z) Posterior Predictive p(ẑ|z−, x)
Schema n PPL ∆ base-k (↓) ∆ base-r (↓) F1 ÷ base-k (↑) ÷ base-r (↑)

NLI 3 22.8 0.62 -0.08 58.0 1.02** 1.01 **
Stance 4 21.5 -1.71 -3.21** 39.1 0.88** 0.83 **
Role 4 22.3 -0.06 -0.33** 38.7 1.11** 1.10 **
Identity 6 21.8 -0.42 -0.94 25.0 1.00 1.15 **
Argument. 6 21.7 -0.52 -1.04 30.7 1.10 ** 1.12 **
Discourse 8 22.3 0.54 -0.75 19.2 1.06 ** 1.08 **
Retrieval 10 23.7 1.47 0.36 15.8 1.10 ** 1.12 **
Affiliation 14 20.5 -2.11** -3.04** 10.5 1.26 ** 1.16 **

Table 3.17: Results of comparing our schemata against each other. In the left results column,
we show conditional perplexity, which shows how well each schema explains the document
text. Shown is PPL (the mean perplexity per schema), ∆kmeans (PPL - avg. perplexity of
kmeans) and ∆random (PPL - avg. perplexity of the random trial). Higher perplexities
mean worse predictive power, so the more negative the ∆, the better. In the right results
column, we show posterior predictive, measured via micro F1-score. We show F1 (f1-score
per schema), ÷ kmeans (F1 / f1-score of kmeans), ÷ random (F1 / f1-score of random
trial). Statistical significance (p < .05) via a t-test calculated over 500-sample bootstrapped
f1-scores shown via **.

source q, we assign a single label, y, with the most mutual information56 across sentences

attributed to that source, s(q)1 , ...s
(q)
n .

NLI, Stance We use an NLI classifier trained by [381] to label each sentence attributed to

source q as a separate hypothesis, and the article’s headline as the premise. We use mutual

information to assign a single label. We create a stance training dataset by aggregating

several news-focused stance datasets57. We then fine-tune GPT3.5-turbo58 to label news

data and label 60,000 news articles. We distill a T5 model with this data (Table 3.16 shows

T5’s performance).

56argmaxy p(y|q)/p(y))
57FNC-1 [382], Perspectrum [383], ARC [384], Emergent [385] and NewsClaims [386]. We filter these sets to

include premises and hypothesis ≥ 10 words and ≤ 2 sentences.
58We use OpenAI’s GPT3.5-turbo fine-tuning endpoint, as of November 16, 2023.

125



3.5 Examining Discourse Schemas for Source-Finding

3.5.2.3 Classification Results

As shown in Table 3.16, we model schemata within a range of f1-scores ∈ (53.3, 67.2),

showing moderate success in learning each schema59. These scores are middle-range and

likely not useful on their own; we would certainly have achieved higher scores with more

state-of-the-art methods. However, we note these classifiers are being used for comparative,

explanatory purposes, so their efficacy lies in how well they help us compare plans, as we will

explore in the next section.

3.5.3 Comparing Schemata

We are now ready to explore how well these schemata explain source selection in documents.

We start by describing our experiments, then baselines, and finally results. All experiments

in this section are based on the 90, 000 news articles filtered from NewsEdits, labeled as

described in the previous section. We split 80, 000/10, 000 train/eval.

3.5.3.1 Implementing Planning Metrics

We now describe how we implement the metrics introduced in Section 3.5.1: (1) conditional

perplexity and (2) posterior predictive.

Conditional Perplexity To measure conditional perplexity, p(x|z), we fine-tune GPT2-base

models [147] to take in it’s prompt a sequence of latent variables, each for a different source,

and then assess likelihood of the observed article text.60 This is similar to measuring vanilla

perplexity on observed text, except: (1) we provide latent variables as conditioning (2) by

fixing the model used and varying the labels, we are measuring the signal given by each set of

different labels. Our template for GPT2 is:

⟨h⟩ h ⟨l⟩ (1) l1 (2) l2...⟨t⟩ (1) s
(q1)
1 ...s

(q1)
n (2)...

59When using these classifier outputs for evaluating plans, in the next section, we introduce noise (i.e.
random label-swapping), so that all have the same accuracy.

60We note that this formulation has overlaps with recent work seeking to learn latent plans [376, 387, 219].
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Red is the prompt, or conditioning, and green is the text over which we calculate

perplexity. <tokens> (e.g. “(1)”, “⟨text⟩”) are structural markers while variables l, h, s

are article-specific. h is the headline, li is the label for source i and s
(q1)
1 ...s

(q1)
n are the

sentences attributable to source i. We do not use GPT2 for generation, but for comparative

purposes, to compare the likelihood of observed article text under each schema. We note that this

implements Eq. 3.2 only if we assume green preserves the meaning of x, the article text.

Our data processing (Section 3.5.2.1), based on our learned α(Xi) model (Section 3.2) gives

us confidence in this.61

Posterior Predictive To learn the posterior predictive (Equation 3.3), we train a BERT-based

classification model [285] to take the article’s headline and a sequence of source-types

with a one randomly held out. We then seek to predict that source-type, and evaluate using

F1-score. Additionally, we follow [1]’s observation that some sources are more important

(i.e. have more information attributed). We model the posterior predictive among the 4

sources per article with the most sentences attributed to them.

3.5.3.2 Baselines

Vanilla perplexity does not always provide accurate model comparisons [389, 390] because

it can be affected by irrelevant factors, like tokenization scheme. We hypothesized that the

dimensionality of each schema’s latent space might also have an effect [391]; larger latent

spaces tend to assign lower probabilities to each point. Thus, we benchmark each schema

against baselines with similar latent dimensions.

Base-r, or Random baseline. We generate k unique identifiers62, and randomly assign one

to each source in each document. k is set to match the number of labels in each schema.
61Initial experiments show that text markers are essential for the model to learn structural cues. However,

they also provide their own signal (e.g. on the number of sources). To reduce the effects of these artifacts,
we use a technique called negative prompting [388]. Specifically, we calculate perplexity on the altered logits,
Pγ = γ log p(x|z) − (1 − γ) log p(x|ẑ), where ẑ is a shuffled version of the latent variables. Since textual
markers remain the same in the prompt for z and ẑ, this removes markers’ predictive power.

62Using MD5 hashes, from python’s uuid library.
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Base-k, or Kmeans baseline. We first embed sources as paragraph-embeddings using

Sentence BERT [221] 63 Then, we cluster all sources across documents into k clusters using

the kmeans algorithm [392], where k is set to match the number of labels in the schema

being compared to. We assign each source it’s cluster number.

3.5.3.3 Results and Discussion

As shown in Table 3.17, the supervised schemata mostly have have lower conditional

perplexity than their random and unsupervised kmeans baselines. However, only the

Stance, Affiliation and Role schemata improve significantly (at p < .001), and the Role

schema’s performance increase is minor. Retrieval has less explainability relative to it’s

baselines. There is a simple reason for why some schemata have either the same or more

conditional perplexity compared to their baselines: they lack explainability over the text

of the document, but are not random and thus might lead to overfitting. We examine

examples and find that Retrieval does not impact wording as expected: writers make

efforts to convey information similarly whether it was obtained via a quote, document or a

statement. We face a dilemma: in generating these schemata, we chose Retrieval because

we assumed it was an important planning criterion. However, our results indicate that

it holds little explanatory power. Is it possible that some plans do not get reflected in the text

of the document? To address this question, we assign Ẑ = argminZ p(x|z), the schema for

each datapoint with the lowest perplexity, using scores calculated in the prior section64, we

calculate the lowest-perplexity schema. Table 3.20 shows the distribution of such articles.

We then task 2 expert journalists with assigning their own guess about which schema best

describes the planning for the particular article, for 120 articles. We observe an F1-score of

74, indicating a high degree of agreement.

Interestingly, we also observe statistically significant improvements of kmeans over

random baselines in all cases (except k = 3). In general, our baselines have lower variance

63Specifically, microsoft/mpnet-base’s model https://www.sbert.net/docs/pretrained_models.html.
64across the dataset used for validation, or 5,000 articles
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in perplexity values than experimental schemata. This is not unexpected: as we will

explore in the next section, we expect that some schemata will best explain only some

articles, resulting in a greater range in performance. (For more detailed comparisons, see

[274]). Posterior predictive results generally show improvement across trials, with the

Affiliation trial showing the highest improvement over both baselines. This indicates that

most tagsets are, to some degree, internally consistent and predictable. Stance is the only

exception, showing significantly lower f1 than even random baselines. This indicates that,

although Stance is able to explain observed documents well (as observed by it’s impact

on conditional perplexity), it’s not always predictable how it will applied. Perhaps this is

indicative that writers do not know a-priori what sources will agree or disagree on any

given topic before talking to them, and writers do not always actively seek out opposing

sides. Finally, as another baseline, we implemented latent variable model. In initial

experiments, it does not perform well. We show in [314] that the latent space learned by

the model is sensible. Bayesian models are attractive for their ability to encode prior belief,

and ideally they would make good baselines for a task like this, which interrogates latent

structure. However, more work is needed to better align them to modern deep-learning

baselines.

Summary In EL, we infer human trajectories with qθ(τ | g) and train π(τ | x) to emulate

structured regularities of those trajectories. Discourse schemata give us explicit abstractions

Z at which to compare humans and policies: they define signatures σZ(τ) and sequence

regularities that we can penalize when π(τ | x) deviates. However, until this work there

were no good ways to choose the best discourse schema. With conditional perplexity and

posterior predictive, introduced in this work, we now have estimators to choose among

competing schemata, allowing us to effectively learn how to choose planners to trust in a

given context. This ties the theoretical role of schemas (as cognitive scaffolds) to concrete

levers in planning and executing.
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Newspaper Sections Proportion of Sources with each Label

Arts Individual: 0.29 Media: 0.19 Witness: 0.17
Automobiles Corporate: 0.41 Witness: 0.17 Media: 0.11
Books Individual: 0.26 Media: 0.19 Witness: 0.18
Business Corporate: 0.51 Government: 0.2 Industry Group: 0.06
Dining and Wine Witness: 0.28 Individual: 0.18 Media: 0.17
Education Government: 0.36 Academic: 0.19 Witness: 0.1
Front Page Government: 0.5 Political Group: 0.09 Corporate: 0.08
Health Government: 0.33 Academic: 0.19 Corporate: 0.12
Home and Garden Individual: 0.21 Witness: 0.19 Corporate: 0.17
Job Market Corporate: 0.26 Individual: 0.15 Witness: 0.14
Magazine Witness: 0.23 Media: 0.2 Individual: 0.18
Movies Individual: 0.28 Media: 0.18 Witness: 0.18
New York and Region Government: 0.36 Witness: 0.13 Individual: 0.12
Obituaries Government: 0.18 Individual: 0.18 Media: 0.16
Opinion Government: 0.43 Media: 0.14 Witness: 0.12
Real Estate Corporate: 0.33 Government: 0.21 Individual: 0.12
Science Academic: 0.4 Government: 0.19 Corporate: 0.1
Sports Other Group: 0.38 Individual: 0.15 Witness: 0.14
Style Individual: 0.23 Witness: 0.2 Corporate: 0.17
Technology Corporate: 0.41 Government: 0.17 Academic: 0.09
The Public Editor Media: 0.44 Individual: 0.16 Government: 0.16
Theater Individual: 0.34 Witness: 0.18 Media: 0.14
Travel Witness: 0.25 Corporate: 0.21 Government: 0.15
U.S. Government: 0.44 Political Group: 0.12 Academic: 0.08
Washington Government: 0.6 Political Group: 0.1 Media: 0.08
Week in Review Government: 0.37 Academic: 0.11 Media: 0.1
World Government: 0.54 Media: 0.09 Witness: 0.09

Table 3.18: Distribution over source-types with different Affiliation tags, by newspaper
section. Evidence that a distributional and composite view on source-finding has validity.
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3.5.4 Using Schemata Prediction for Explanations

Taken together, our observations from (1) Section 3.5.2.3) indicate that schemata are largely

unrelated and (2) Section 3.5.3.3 indicate that Stance and Affiliation both have similar

explanatory power (although Stance is less predictable). We next ask: which kinds of

articles are better explained by one schema, and which are better explained by the other?

If we can answer this question, we take steps towards being able to plan source-selection

via different schemata. Such a step could lead us towards better multi-document retrieval

techniques, by giving us axes to combine different documents into a retriever.

In Table 3.19, we show topics that have low perplexity under the Stance schema,

compared with the Affiliation schema (we calculate these by aggregating document-level

perplexity across keywords assigned to each document in our dataset). As we can see,

topics requiring greater degrees of debate, like “Artificial Intelligence”, and “Taylor Swift”

are favored under the Stance Topic, while broader topics requiring many different social

perspectives, like “Culture” and “Freedom of Speech” are favored under Affiliation. We

set up an experiment where we try to predict Ẑ = argminZ p(x|z), the schema for each

datapoint with the lowest perplexity. We downsample until assigned schemata, per articles,

are balanced and train a simple linear classifier65 to predict Ẑ. We get .67 ROC-AUC (or .23

f1-score). These results are tantalizing and offer the prospect of being able to better plan

source retrieval in computational journalism tools, by helping decide an axis on which to

seek different sources. More work is needed to validate these results.

Summary In conclusion, we explore ways of thinking about sourcing in human writing.

We compare 8 schemata of source categorization, and adapt novel ways of comparing

them. We find, overall, that affiliation and stance schemata help explain sourcing the best,

and we can predict which is most useful with moderate accuracy. Our work lays the

ground work for a larger discussion of discovering plans made by humans in naturally

65Bag-of-words with logistic regression
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Stance Affiliation

Bush, George W Freedom of Speech
Swift, Taylor 2020 Pres. Election
Data-Mining Jazz
Artificial Intelligence Ships and Shipping
Rumors/Misinfo. United States Military
Illegal Immigration Culture (Arts)
Social Media Mississippi

Table 3.19: Top keywords associated with articles
favored by stance or affiliation. Keywords are
manually assigned by news editors.

Affiliation 41.7%
Identity 22.7%
Stance 17.7%
Role 13.4%
Argument. 1.2%
Discourse 1.1%
NLI 1.1%
Retrieval 1.1%

Table 3.20: Proportion of our valida-
tion dataset favored by one schema,
i.e. Ẑ = argmaxZ p(x | z).

generated documents. It also takes us steps towards tools that might be useful to journalists.

Naturally, our work is a simplification of the real human processes guiding source selection;

these categories are non-exclusive and inexhaustive. We hope by framing these problems

we can spur further research in this area.
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3.6 After Source-Finding: A System to Obtain Information

from Sources

So far, we have formalized source-finding as a creative retrieval problem within Emulation

Learning. We started, in Section 3.2, infer latent sourcing trajectories (τ ) from observable

articles (g) with qθ(τ | g). We showed that sourcing is compositional and predictable, in

Section 3.2.3; evidence we used in Section 3.3 to critique policy models learned implicitly

during pretraining, π(llm)(τ |x). We proposed our own policy models, in Section 3.4, based

on enforcing distributional similarities, or schema signatures, and finally, we introduced

methods to critique schemas, in Section 3.5.

We close this Chapter on source-finding with a more light interlude. We again return to

the notion, outlined in Section 3.2, of what an action, a, is in the source-finding task. The most

naive version is: a encompasses all that is needed to identify, find, and obtain information

from a source. While, in Section 3.4, we split apart identifying from finding processes66, we

still assumed that obtaining information from sources was trivial. What if that is not the

case? What if an LLM had to actually interact with sources, in a dialogue setting to extract

information from them? In this section, we introduce a dialogic subtask after the source is

found with the goal of obtaining quotes and facts to satisfy each source-finding macro-action

at. Concretely, in this section, we view interviews as sub-trajectories τinterview ⊂ τ with

actions at1, at2..., as conversational dialogue and states st1, st2... as usable information

that is obtained from the source and is later published in the article, g. We introduce a

NewsInterview game, shown in Figure 3.12, to incorporate emulation learning in order to

learn π(τinterview|x), a proper conversational policy.

66Recall, by splitting the planner from the query-executor, in a hierarchical setting.
67The high-level objectives the LLM agent starts with are similar to a journalist’s pre-interview notes
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Figure 3.12: Walkthrough of the the NewsInterview game. An interviewer-LLM converses
with a source-LLM: the interviewer-LLM is rewarded based on how many information
items (shown at the right) are extracted from the source. The interviewer agent is given a
set of high-level objectives67 while the source is given a persona and a set of information
items. For k turns: Interviewer: asks a question based on their goals and information
obtained (Step 1). Source: responds with a multi-step process. First, they determine how
many information items in their fact-book are relevant to the question (Step 2a). Then, they
assess their comfort level. Depending on this, we randomly sample a subset of relevant
information to respond with (Step 2b). The source is then prompted to craft a reply aligned
with their persona (Step 2c). After k turns: we track on the back-end which items the source
responded with and give this number as a reward to the interviewer.

3.6.1 Grounding Challenges in Human-LLM Dialogues

Before we discuss the NewsInterview game in more detail, we discuss the challenges that

prevent pretrained LLMs from implicitly learning interviewing policies, π(llm)(τinterview|x).

Large Language Models (LLMs) have demonstrated impressive capabilities in generating

coherent text but often struggle with strategic [393] or emotional dialogue [394]. For example,

[394] examined LLM-generated responses to dialogues and found fewer occurrences of

“grounding language” [395, 396], like acknowledgments or affirmations, that humans

typically use to foster comfort and trust. From an Emulation Learning perspective, these

observations indicate underfitting of π(llm) to the human behavioral prior π∗ in long-horizon

interaction, rather than a simple modeling deficit at the token level. This can impede

an LLM’s ability to serve in a variety of situations: e.g., education [397], mental health

[398] or conflict resolution [399]. However, prior efforts to ameliorate such gaps face
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limitations: existing large datasets (1k–10k transcripts) are generated via crowdsourcing

and are inherently unnatural [400, 401, 402]. More natural datasets, of educational [403] or

therapeutic environments [404], are difficult to collect due to privacy concerns [405] and

are small-scale (100–1k transcripts). Journalist interviews, typically conducted between an

“interviewer” and a “source,” with the goal is to obtain information, also have extensive

need for grounding. Sources are often anxious or unclear [406], and human interviewers

are constantly evaluating: (1) Are my questions getting fully addressed? (2) Do I need to

more effectively engage or persuade a source [343]?

To study how to develop optimal policies π∗(τ |x) in journalistic contexts, we start by

collecting interview transcripts from two major US news sources: National Public Radio

(NPR) and Cable News Network (CNN), filtering to over 40,000 dyadic informational

interviews.68 As in prior sections, we frame can this in an emulation learning lens. Taking

human interviews as the goal-state, g, we study the strategies of the human interviewer

and find that pretrained LLMs suffer from the same lack of grounding as in other dialogue

settings [394]. We find that significant discourse differences exist in the kinds of questions

asked by LLMs: for example, LLMs are 50% less likely to make acknowledgments, and

30% less likely to pivot to higher-level questions.

Motivated by these observations, we develop a realistic game environment to serve as

a playground: in this simulation, LLMs play the role of the interviewer and the source.

The goal for the interviewer is to obtain the maximal amount of information from the source in

a limited number of questions. In order to induce the need for grounding communication,

we design different personas for sources (e.g., anxious, clueless, dominating), each with

different communication patterns. We also add a responsiveness to strategic dialogue:

sources will only return information if they are persuaded in a manner befitting their

personas69 [406, 343]. We find that our environment is realistic: source-LLMs correlate

68As opposed to games, questionnaires and other formats these news outlets release.
69We understand that “being persuaded,” “being made comfortable,” and “being acknowledged” are all

separate forms of grounding, some more active than others. However, we use “persuasion” as a short-hand
encompassing all categories.
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significantly with humans in their ability to identify persuasion (r = .43, p < .0001).

However, interviewer-LLMs struggle to both recognize when questions are answered and

actively persuade the source, resulting in suboptimal information extraction.

3.6.2 Dataset Processing

3.6.2.1 Data Collection

We aggregate, clean and condense multiple publicly available datasets of interview

transcripts from NPR and CNN in order to build a high-quality interview dataset of 45k

source-to-interview transcripts. These transcripts are published records of live interviews

conducted between a journalist and sources invited on the program. They provide a rich

resource for analyzing natural language interactions.

3.6.2.2 Data Filtering for Interview Analysis

We want to focus on one-on-one informational interviews between a journalist and a

single source. We start with 487,310 transcripts collected by Majumder et al. [407] and

Zhu et al. [408]. However, initial examination of the transcripts reveals many of them

to be low-quality: they include multiple sources, are formatted as panel discussions, or

are not informational in nature (e.g., they include game shows). To filter the transcripts

and retain only those that fit our criteria, we prompt Llama-3.1-70b70 to classify each

transcript based on the number of participants and the nature of the content. The prompts

used for filtering are provided in [275]. After filtering, 45,848 interviews remain. Finally,

the original transcripts do not distinguish which participant was the interviewer vs. the

interviewee. So, we count each participant’s use of question marks: the participant with

more is labeled the interviewer.71 We treat each validated interview as a trajectory τ ∗

composed of grounding decisions.

70https://huggingface.co/meta-llama/Meta-Llama-3.1-70B-Instruct [409] using the vLLM framework
[410]

71Manual validation on 50 interviews showed this method correctly identified roles in > 98% of cases.
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EM Info. Motivation Style Discourse Context

Baseline-LLM 3.9% 4.4% 4.7% 11.9% 36.2% 53.0%
Chain-of-Thought (CoT) 4.5% 3.6% 5.2% 12.8% 37.0% 56.9%
LLM w. Outline 3.7% 3.8% 4.1% 9.6% 36.2% 46.6%
Outline-CoT 3.6% 3.9% 4.3% 8.3% 29.9% 43.1%

Human 8.2% 17.5% 35.4% 40.2% 54.5% 60.3%

Table 3.21: Discourse-Level Alignment of LLM-Generated Questions with Human
Interview questions. We give an LLM, Llama-3.1-70b, the prior t− 1 turns in an interview
and prompt it to ask the next question. We measure the percentage of times this question
aligns to a question asked by a human at the same point in the interview across six
dimensions: Exact (nearly exactly the same as the original utterance), Information (relevant
factual content), Motivation (same motivation as the original question), Style (alignment
with tone and phrasing), Discourse (structural role within the interview), and Context
(incorporation of contextual knowledge). The prompting strategies compared are Baseline-
LLM, Chain-of-Thought (CoT), LLM with an Outline, and Outline-CoT; and, we conduct a
human baseline trial with a former professional journalist.

Conversations have, on average, 7.5 turns between the interviewer and source. The

source speaks for longer, with an average of 551 words per conversation compared with the

interviewer’s 270 words (or 27 words per source utterance, 16 per interviewer). Interviewers

tend to ask “what” and “how” questions the most, and conversations occur at Flesch-

Kincaid Grade of 6.9 [411]. Interviews cover a range of topics, from literature , politics ,

academics , and international affairs (see [275]).

3.6.3 Analysis

In this section, we analyze how humans conduct informational interviews and compare

this behavior to that of pretrained LLMs, to explore whether LLMs face similar grounding

problems as observed in other settings [395, 412]. We keep the conversation history C

and take the per-turn state as xt ≡ Ct−1. Our approach is a combination of approaches

taken in Sections 3.3, 3.4 and 3.5 in that (1) we compare human-expert policies π∗(τ |x)

with implicitly learned policies π(llm)(τ |x) (2) we take a distributional analysis approach,
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(a) Proportion of Discourse types through-
out human interviews. Human journalists
use different discourse roles across the in-
terview, including gradually more Acknowl-
edging statements, increasing from 5% at the
start to over 20% by the end.

(b) Proportion of Discourse types of LLM
responses in interviews. LLMs display an
increasing likelihood of asking opinion or
broadening questions over the course of an
interview and a lower likelihood of returning
to outline-level questions.

Figure 3.13: Comparison of discourse types throughout an interview (the first turn, usually
a greeting, is excluded). The LLM is shown the first t− 1 turns of a human interview and
asked to generate the next question.

generating discourse schemata and comparing schematic signatures. I describe these now.

3.6.3.1 Generating Counterfactual Utterances

One way to assess how an LLM would behave in an interview setting offline is to perform

a counterfactual simulation [412]. Specifically, given a human interview consisting of at

least t interviewer-source conversational turns (u(I)1 , u
(S)
1 )...(u

(I)
t , u

(S)
t )..., we feed t− 1 turns

into the LLM along with a prompt instructing the LLM to generate the next question. This

generates a counterfactual, û(I)t to what the human would have said, u(I)t ; and yields a

one-step, offline probe of π(llm)(τ |x) against human reference moves, providing per-step

emulation errors. We experiment with different variations: (1) Baseline: The LLM is

simply asked to produce the next question. (2) Chain-of-Thought (CoT): The LLM is

instructed to reason about the information already provided in the interview, consider

what might be left to ask, and then generate the next question. (3) Outline: the LLM is

provided with an outline of the interview goals (described in Section 3.6.4.2) to incorporate
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Figure 3.14: Distribution of Discourse Roles in Questions, Across Different Prompting
Strategies. We compare the proportions of discourse roles of questions (e.g., Follow-up,
Acknowledgment) generated by (a) human journalists, (b) Baseline-LLM (Llama-3.1-70b)
(c) LLM prompted with an Outline and (d) with Chain-of-Thought (CoT). Acknowledgment
statements, which often build empathy, are significantly underrepresented in LLM prompt-
ing approaches, compared to human-generated questions (see [275] for Outline-CoT).

into CoT reasoning.72

3.6.3.2 Evaluating LLM Counterfactuals

To analyze how similar LLM questions are to human questions, we perform two analyses:

Consistency Analysis: We aim to assess how similar gt is to qt across different comparison

categories [413], specifically: Informational consistency (i.e., gt and qt seek similar informa-

tional objectives); Motivational, (i.e., similar outcomes); Style, (i.e., similar tone); Contextual

consistency (i.e., similar appropriateness given the context); Discourse consistency (i.e.,

similar purposes in the overall conversation). Putting these together, we assess an Exact

match. We ask an LLM, GPT-4o, to perform this assessment and manually inspect its

outputs and reasoning threads.

Discourse Analysis: We aim to assess whether gt plays a similar function as qt does. We

develop a schema to describe the role of each question.73 This schema includes the following

72We include full prompt examples for all three variations in [275]. All question-generation experiments
are conducted using Llama-3.1-70b.

73To generate our discourse schema, we asked two journalists to analyze fifty interview transcripts. One
had eight years of experience in newsrooms, the other was an undergraduate student studying journalism.
We held three conferencing sessions to develop the schema. Then, we blindly annotated ten interviews,
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elements: Follow-up Question (e.g., “Can you tell us more?”), Outline-Level Question

(e.g., “Moving on, can we discuss the next event?”), Acknowledgment Statement (e.g., “I

see, that sounds scary.”), Opinion/Speculation (e.g., “What do you think will happen?”),

Broadening Question (e.g., “How does this fit into the broader trend?”), Verification

Question (e.g., “So to confirm...”) and Challenge Question (e.g., “These dates don’t line

up.”). See [275] in the Appendix for definitions of each role. This comparison mirrors our

schema-signature approaches in Sections 3.4 and 3.5 and applies at the trajectory level.

3.6.3.3 Findings

Insight #1: Acknowledgment statements are virtually absent from all LLM variations.

As shown in Figure 3.14, grounding gaps exist in journalistic interviewing similar to those

observed by Shaikh et al. [394]. While human journalistic interviewers tend to make

Acknowledgment statements in about 9% of their utterances, all prompting variations that

we experimented with made close to zero of these statements. This lack of acknowledgment

is paired with not mirroring the source’s speaking style; human journalists, as shown [275],

bring character and voice.

Insight #2: LLMs do not engage in strategic multi-turn questioning. Even in settings

where LLMs are exposed to interview outlines, they are still undirected in their questions.

As shown in Figure 3.14, LLMs are significantly more likely to ask follow-up questions

than humans across all prompting variations. Introducing chain-of-thought and outline

variations increases the rate at which the LLM asks outline-level questions. However, the

rate remains significantly below human levels. Additionally, they are also more likely to

ask either Opinion questions or Broadening questions. In fact, in Figure 3.13b, we observe

that LLMs tend to ask increasing amounts of Opinion Questions and Broadening Questions

achieving a κ = .6. Given our schema, we then asked an LLM to classify discourse roles in sentences. The
prompt contains the interview context, (u(I)1 , u

(S)
1 )...(u

(I)
t−1, u

(S)
t−1), and current question u(I)t . To validate the

LLM’s labeling accuracy, we had the professional journalist label 10 additional interviews as ground-truth
and scored the LLM’s assignments. The LLM scored a .8 f1 score.
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over time, which humans do not. These questions can be vague and open-ended. Together,

these findings suggest an inability to direct an interview in a desired direction and engage

in multi-turn planning.

Insight #3: LLMs are capable of understanding context, but fail in other categories of

similarity to humans. Comparing the content and style of LLM interviews to human

interviews in Table 3.21, we note that, overall, LLMs are broadly dissimilar to humans in

style, motivation and information-seeking. One area where the LLMs succeed, relatively, is

understanding the context of the interview beforehand. This is not a new observation –

much recent work, e.g., in dialogue-tracking, has found LLMs to perform well [414]. The

fact that LLMs can preserve context over multiple turns and do not drift away from the

topic indicates that models might one day be able to engage in multi-turn goal-oriented

dialogue, given the right reward signals and learning environment. Taken together, these

findings suggest that journalistic dialogue is suitable for studying effective communication

patterns, and also highlight significant gaps in current language modeling objectives.

While LLMs can generate contextually relevant questions, they lack both an emotional and

connective drive as well as the strategic planning exhibited by human interviewers.

3.6.4 NewsInterview: An Interview Game

As shown, LLM counterfactual questions exhibit several shortcomings: they are less likely

to acknowledge the interviewee and focus excessively on follow-up questions. But do both

of these shortcomings point to a lack of strategic multi-turn planning? In human dialogue,

grounding exists for long-term strategic purposes [415], yet there currently exists no way

to way to obtain these kinds of long-term rewards during LLM training. Motivated by

this insight, our goal for the remainder of the paper is to create and validate a realistic

game-environment with a delayed reward signal. We leave to future work utilization of

this framework for improving strategic dialogue.
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Algorithm 1 Game-play. States xt ≡ Ct−1; terminal return R(g) = |UK |.
Input Interviewer objectives o ≡ ν(g)74, Source Informational Items I , Source persona

ϕ, K turns
Output Reward R

1: Initialize: Reward R← 0, Conversation History C ← [], Used items U ← {}
2: for i ∈ 1, ...K do
▷ Step 1: Interviewer Question Generation

3: u
(I)
i = Interviewer(C, o)

▷ Step 2: Source’s Response Generation
4: Ei =getRelevantInfoItems(I, U, u

(I)
i )

5: pi =getPersuasionLevel(C)
6: Fi =getItemsToReturn(Ei, pi)

7: u
(S)
i =Source(u

(I)
i , C, Fi, pi, ϕ)

▷ Update Variables
8: U ← U ∪ Fi, C ← C ⊕

[
u
(I)
i , u

(S)
i

]
, R← R + |Fi|

9: end for

3.6.4.1 Game Design Overview

We first introduce our game on a high level, illustrated in Figure 3.12, and then describe

our implementation. Our game-play proceeds in a loop, shown in Algorithm 1. The

“player” in our game plays the role of an interviewer and is able to ask questions to a

source, based on the conversational history and the interview objectives (the Interviewer()

step). The source is given a set of informational items and assesses whether any of

these items are relevant to the question (the getRelevantInfoItems() step); the source

then decides how persuaded or comfortable they are based on the conversational history

(the getPersuasionLevel() step). Based on this, we determine the subset of relevant

items the source returns (the getItemsToReturn()), and track these on the back-end as an

accumulating reward. The reward, obtained at the end of the game, is the unique number

of information items disclosed. We take xt ≡ Ct−1 (state), latent factors ζ (e.g., source

characteristics), and terminal return r(g) = |UK |. The environment therefore supplies both

trajectories and a controlled, delayed-return setting to stress-test π̂(τ | x).
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3.6.4.2 Game-play Design

To design our game, we draw heavily on two journalism textbooks: Interviewing: A Guide

for Journalists and Writers, which explains how to conduct effective interviews and speak to

reluctant, defensive, or poor-explaining sources [343]; and Journalism: Principles and Practice,

which describes how to build trust [406]. We first start by describing our data processing,

and then we will describe Algorithm 1 in more detail. For all game-play prompts, see [275].

Dataset Preparation for Simulation To prepare our dataset for use in the simulated game

environment, we group together: (1) source responses and ask an LLM.75 to summarize a

set of specific informational items and (2) interviewer questions and ask an LLM to summarize

them into a set of high-level objectives. The sources’ informational items mimic the knowledge

a source likely had going into the interview76 and the interviewer’s objectives represent

the agendas they had prior to the conversation.77 Both of these summaries are represented

in Figure 3.12 as Given, and are designed to give the interviewer-LLM and the source-LLM

a basis for communication. For further examples of both, see [275].

Source Design Element #1: Personas Now, we introduce the design of the source. We

focus attention on this construction to build a robust game environment that accurately

mimics human interactions. To make game-play varied and challenging, we draw from

Sedorkin [343] to design eight different personas: Anxious, Avoidant, Adversarial, Defensive,

Straightforward, Poor Explainer, Dominating and Clueless. For descriptions of each persona,

as well as example responses, see [275]. These personas allow us to study how interviewers

perform in a wider array of challenging scenarios.

Source Design Element #2: Persuasion The following three functions, in sequence, power

our game-play: getRelevantInfoItems→ getPersuasionLevel→ getItemsToReturn. The

75Llama-3.1-70b
76Manual evaluation confirms these information items are present in initial interviews and are non-

overlapping.
77Manual validation with professional journalists confirms that these outlines reasonably capture what a

journalist might prepare before an interview and do not leak information.
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first, getRelevantInfoItems, takes the interviewer’s question and determines which of

the sources’ information items are most relevant; it is simply a retrieval function that we

implement using an LLM. getPersuasionLevel is a function that determines the selected

source’s level of comfort or persuasion (on a five point scale) in the current conversation.

getItemsToReturn is a stochastic engine: it randomly selects, based on the persuasion

level, the number of relevant information items to return: the more persuaded a source is,

the more likely they are to return more information. The persuadability component to our

game-play increases the multi-turn strategy: because persuasion is assessed with reference

to the entire interview, the interviewer gets more reward for spending words early in the

interview persuading the source to feel comfortable. Because key drivers of disclosure

are only partially observed, the setting is naturally partially observable; this supports, in

the future, extending inverse inference qθ(τ |x) to recover auxiliary information to describe

persuasiveness.

Is it sound for the source-LLM to assess its own level of persuasion? As recent research

has found, LLMs are poor detectors of when they are being persuaded [416] and can even

unknowingly persuade themselves [417]. Furthermore, persuadability varies from person

to person [401, 418]. Luckily, source-persuasion is a well-studied field in journalism. As a

starting point, we draw from Sedorkin [343], and carefully design prompts asking an LLM

to rate the persuasiveness of a prior conversation. Different source personas, according to

Sedorkin [343], are persuaded by different communication patterns: e.g., Anxious sources

are distrustful of journalists; they are usually persuaded by phrases like “I will be as fair as

possible.” We validate this in Section 3.6.4.3.

Source and Interviewer Responses Based on the assessed persuasion level (1–5) of the

conversation, we implement getItemsToReturn. This function takes in all relevant infor-

mation items and randomly draws from a Beta distribution to determine what percentage

of relevant information items to return. We choose five different parameterizations per

persona, each corresponding to a different persuasion level. As can be seen in Figure 3.12,
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we choose these parameterizations such that the more persuaded a source is, the more

left-skewed the distribution is. Each persona has a slightly different parameterization,

reflecting that some personas need less persuasion (e.g., “Dominant”) while others do not

drastically change how much information they return even with more persuasion (e.g.,

poor explainer). See [275] the Beta distributions for each source.

3.6.4.3 Game-play Validation

We conducted human trials to validate how well our game-play environment approximates

real interviews, focusing on persuasion as a pivotal dimension. Five participants, including

two professional journalists and one journalism student, each served as the “source,” rating

their own persuasion levels turn-by-turn on a five-point scale across 72 trials (576 turns

total). The game’s LLM-based source also generated persuasion estimates. We found a

moderate but significant correlation of r = 0.43 (p < .0001). Excluding adversarial personas,

correlation rose to r = 0.68. Bootstrapped estimates confirmed the consistency of these

results, and a power analysis following guidelines from [419] showed our sample size was

adequate to detect this effect.

These trials center on persuasion because the other components of our source design

(i.e., retrieval of correct informational items), while crucial, leverage prior, well-studied

phenomena in retrieval-augmented LLMs and prompt engineering [420, 421]. Our

environment reuses standard cross-encoder reranking and chain-of-thought prompts

[422, 423], meaning that the correct factual content is generally well-handled without

substantial new techniques. Minimal forms of self-reflection [424, 425] were used to

mitigate hallucinations, and no significant factual drift was observed. Hallucinations are

well-studied in the literature [426].

Taken together, this validation suggests that modeling source persuadability in a turn-

level simulation is reasonably accurate and stable. By capturing how LLMs adapt their

strategies across different personas and persuasion thresholds, our system can potentially
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Hardest Medium Easiest
Model Full Game sans. Persuasion sans. Info. withholding

gpt-4o-mini 49.3% 47.5% 84.7%
gpt-4o 50.4% 49.8% 84.2%
Llama-3.1-70b 42.6% 45.5% 80.1%
Llama-3.1-8b 42.4% 48.3% 74.9%

Table 3.22: Performance of LLMs as Interviewers, with Ablations Percentage of in-
formation items extracted (Reward percentage) in each interview by different language
models (gpt-4o-mini, gpt-4o, Llama-3.1-70b, and Llama-3.1-8b) across three conditions:
(1) Hardest: The full game, with information dependent on persuasion and persona. (2)
Medium: an ablation removing the sources’ responsiveness to persuasion. (3) Easy: An
ablation removing the random withholding of information (i.e., a source returns all relevant
information items at each turn). We observe, perhaps unsurprisingly, that removing the
source’s ability to withhold information (Medium→ Easy) drastically increases the reward
percentage at the end of the game. The removal of persuasion strategies has a smaller
effect, with some models showing marginal gains (e.g., Llama-3.1-8b) and others slight
losses (e.g., gpt-4o). This indicates that vanilla LLMs are poorly suited to this persuasion
task.

serve as a stepping stone for training more sophisticated interview agents or supporting

journalism students. Future work might expand the environment’s human trials, repeat

experiments at larger scale, and incorporate further realism checks to ensure robust

dialogue performance and fidelity. This alignment provides face validity that the measured

returns track meaningful progress signals for Emulation Learning rather than artifacts of

the simulator.

3.6.4.4 Game Simulation Results

We run our simulation for 450 interviews with four LLMs as the interviewer78 and gpt-4o for

the source-LLM across all personas. Table 3.22 compares the performance of LLMs across

three conditions: the full game, a version without persuasion, and a version where sources

do not withhold information. In the full game, where sources’ responsiveness depends on

persuasion and persona, the gpt-4o model performs the best, at 50.4%. However, when

78gpt-4o, gpt-4o-mini, Llama-3.1-70b and Llama-3.1-8b
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(a) Rewards of gpt-4o from playing against
sources of different persona types.

(b) Average level of persuasion, from gpt-4o,
towards the different persona types in our
evaluation.

Figure 3.15: Comparison of gpt-4o’s performance across different persona types. The
Adversarial type is by far the hardest to extract information from, however, it is easier to
persuade. LLMs might be most the thrown off by adversarial sources.

persuasion is removed, performance only marginally improves across all models (e.g.,

Llama-3.1-70b reaches 45.5%, while gpt-4o remains stable at 49.8%), indicating that other

aspects of the game (i.e., inferring which information the source has withheld) also pose a

challenge. In the easiest condition, where no information withholding occurs, all models

perform significantly better, with reward percentages reaching over 80%, showing that

withholding is a major obstacle.

Figure 3.15a highlights the performance of gpt-4o across different source personas. The

model achieves the highest information extraction from straightforward personas, while

adversarial and defensive personas are the most challenging. Despite being harder to

extract information from, adversarial sources are easier to persuade (Figure 3.15b).

Figure 3.16a explores how the reward (information extraction) changes over the course

of an interview. The results show a declining trend in reward per conversational turn.

However, the total reward accumulated over time (Figure 3.16b) increases almost linearly,

showing that the LLMs continue to extract information, albeit at a slower rate. Together,

these findings highlight the limitations of current LLMs in engaging with persuasive and

strategic multi-turn interviews. While larger models like gpt-4o outperform smaller ones,
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(a) Average reward across conversa-
tional turns.

(b) Percentage (%) of Reward, by total
reward.

Figure 3.16: Comparison of Rewards over time across language models. For all language
models, the reward declines over time, shown above. However, this is not due to interviewer
“maxing out” reward, as Total Reward increases nearly linearly across conversational turns.

they still exhibit significant gaps in persuasion and adaptive questioning, particularly when

dealing with difficult personas. Viewed through Emulation Learning, the “Easy” ablation

removes long-horizon dependencies, effectively making returns near-myopic — under

which π(llm)(τ |x) appears competent. The large performance gap to the full condition

isolates deficits in temporal organization and persuasion that a better policy would limit.

3.6.5 Discussion

Our findings indicate that news interview transcripts provide a powerful, real-world

resource for studying persuasive, grounding, and multi-turn strategies in dialogue systems.

In particular, we build on prior work that highlights grounding gaps in large language

models (LLMs) [394], extending insights from game-play-inspired multi-turn dialogue

research [393, 427] into a domain abundant with authentic data. By examining human

interviewers’ behaviors, we illustrate how grounding and persuasion manifest naturally

in real-world news interviews, yet remain difficult for current LLMs: counterfactual

next-question experiments are necessary to evaluate qθ(τ | g) by asking whether the

recovered role/content choices match human τobtain; the game evaluates π(τ | x) under the

true delayed Reward. Both are necessary in Emulation Learning: the former ensures we
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emulate human structure, the latter ensures we learn utilities that justify that structure. We

show in Section 3.6.3.3 that humans consistently employ grounding dialogue throughout

their interviews, a tactic LLMs fail to emulate effectively. In Section 4.2.7, we demonstrate

how LLMs struggle to extract information from diverse source personas, particularly

when those personas exhibit adversarial or avoidant traits. These findings underscore the

significance of persona mismatches: while existing game-based dialogue studies often

assume a single persona per environment [428, 427], our results suggest that personae with

different levels of hostility or indifference pose challenges for current models.

One way to address these limitations is to incorporate long-range reward signals during

model training [429]. Grounding dialogue and persuasion are inherently long-horizon

phenomena [395, 415]. In contexts like therapy, for instance, effective grounding fosters

patient openness and lasting progress [430]; in education, it encourages students’ sustained

engagement and deeper learning [431]. Our NewsInterview framework addresses this

by providing an environment in which LLMs must continually strategize about which

questions to ask, what information gaps need filling, and how to persuade sources to

disclose details. It instantiates a training pipeline that (i) uses qθ(τ | g) on observed

trajectories to extract realistic journalist goals and intentions and (ii) fine-tunes π̂(τ | x)

with delayed returns in controlled environments – explicitly addressing long-horizon gaps

in real-world settings. This game-playing setting is less complex than fully adversarial

multi-agent domains [428, 427, 393] because the source’s goal is not to mislead but to

selectively withhold information. Yet, even in this scenario, LLMs struggle to maintain

effective information extraction over multiple turns, pointing to deeper issues in question-

asking. Future directions include refining our getPersuasionLevel function, introducing

importance-weighted or quote-centric reward signals, and further validation.
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3.7 Chapter Conclusion

In this Chapter, we observed how trajectory-modeling challenges arise when we consider

trajectories τ that move beyond 1-horizon tasks. Specifically, when considering longer

trajectories, we must be careful to ensure that τ̃ is composable and learnable (otherwise

we cannot learn a useful policy) (Section 3.2.3), that our action vocabulary A is a useful

vocabulary to describe the phenomena we wish to study (Section 3.5), and that the

granularity of A is either not too granular (we risk losing long-term coherence, as modern

LLMs do) and not to coarse (we cannot distinguish usefully different actions) (Sections

3.4, 3.6). In Section 3.2, we started by directly training an inverse model, qθ(a|g) based

on a learned qj = α(xi, g), to associate sources with sentences xi; we then probed the

composability of τ in order to prove a policy function π(τ |x) was learnable. In Section 3.3,

we asked whether pretrained LLMs implicitly learned such policy functions, π(llm)(τ |x)

and revealed substantial gaps: LLMs were better at proposing angles than sources, but

overall alignment and creativity lagged; fine-tuning helped, yet a sizable deficit remained.

To close this, in Section 3.4, we introduced a hierarchical planner–executor model, where

actions at are decomposed into thinking/planning actions, at,p and executing actions,

at,e: at = [at,e, at,p] ; π(at = [at,p, at,e] |x, st, a<t) = πp(at,p|x, st, a<t)πe(at,e|at,p). at,p is then

chosen to matches distributional signatures of human trajectories; we introduce discourse

analysis for the first time (see Section 1.2.2 for an explanation of discourse) and introduce

a low-dimensional discourse schema to align generated planning steps ât,p with human

a∗t,p. Finally, in Section 3.5 we introduced methods to compare different discourse schemas,

or action vocabularies A and showed in Section 3.6 a fun interviewing game that further

decomposes our action space into thinking, retrieving and obtaining information.

Policy learning is central to emulation learning, and we have barely scratched the surface

in this Chapter. The next chapters will move on from policy learning and explore diverse

challenges (in Chapter 4, we address the execution or realization of τ into state-space
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s = s1, s2 . . .; sn = g; in Chapter 5, we explore datasets that give us richer observability

into intermediate state spaces). Challenges in policy learning in the broader field of

reinforcement learning continue to be an active area of research today; emulation learning,

with it’s inferred action spaces, offers yet additional challenges. Going forward, I am

especially interested in exploring inverse reinforcement learning [2] as deeper approach to

policy learning; only when we truly start to consider reward-learning can we (a) get

closer to emulation as performed by humans in social learning (b) generalize beyond simply

replicating goal states g and actually learn what makes goal states potent and desirable.

Reward learning also gives a pathway towards making active interventions to improve the

goal states we reach. We can interrogate rewards to discard unwanted rewards (e.g. bias

in source-selection). I am also interested in hierarchical approaches to policy learning.

Although we explored these approaches in Section 3.4, I believe we have only scratched the

surface. Emerging approaches to reasoning, in domains like math and coding [432, 433,

434] including hierarchical reasoning [435] offers a tantalizing approach to latent variable

modeling that generalizes beyond low-dimensional discourse schemata.
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Chapter 4

State-Space Realization in Emulation Learn-

ing

4.1 Story-Structuring: A Study in How Information is Or-

ganized

After the journalist has selected a newsworthy event, performed source-finding, and has

compiled all the reporting material necessary to understand and narrate it, they are ready

to craft a longer narrative form. This process, story-structuring, is the creative process we

will focus on in this Chapter. We will start with the interesting observation, shown in

Figure 4.2. The top part of the figure shows the distribution over discourse structures

in human-written news articles. We observe a canonical, normative structure; it starts

Figure 4.1: In the journalism pipeline outlined in Section 1.3, we focus now on the third
step: story structuring, or taking pieces of information and organizing them together in a
cohesive narrative form. Story structuring requires us to learn high-level representations
of the function of text and reason about how to generate longer, coherent and human-like
narratives.
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with main events, gives past context, then finally gives future expectations — this is

what practitioners call an inverse pyramid [436]. The inverse pyramid has developed through

industry norms to deliver the most information, in the quickest form, to readers [207, 437].

(a) Structure of human-written articles.

(b) Structure of naively generated GPT-2 arti-
cles.

Figure 4.2: Discourse structure [25] of
articles generated via humans or LLMs.
The likelihood of a discourse element
being in the kth sentence of a news article
is shown. Machine-generated structure
is labeled by humans.

Indeed, structure is an essential area of study

in creative works, for two reasons. First, the

structure of a work has an impact on read-

ers: structured works allow readers to com-

press, navigate, and remember complex infor-

mation. Research in text-comprehension work

shows that readers recall top-level ideas better

when discourse structure is predictable [437]

and build hierarchical “macrostructures” as

they read [438]. Similar effects hold for sto-

ries: when events are arranged in canonical

narrative schemata, recall and perceived coher-

ence improve [439, 440]. Beyond text, listeners

encode hierarchical musical form and use global

structure to interpret local musical events [441].

Structure functions as a cognitive technology

for meaning; without it, people work harder,

learn less, and forget more. Secondly, and just as

importantly: structure is deliberate and planned

by the human creator [442]. Cognitive models

of writing treat global organization of a work as

a conscious planning process that is central to creative control [443, 444] (see Section 1.2.2

for an introduction to discourse and its relation to emulation).

However, recent AI models struggle to perceive and adhere to global structures while
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generating; even though surface-level generations are fluent, models can meander [445]

and fail to capture deeper cohesion in long-form generations. Figure 4.2 and [446, 19]

observe this in news; this observation has also been made in other domains — story-telling,

dialogue and essays [318, 447, 448, 449, 450]; music [451, 452]; even images [453, 454].

In in summary, (1) structure is important for readers (2) structural cues signal human

action, deliberation and thought and (3) standard self-supervised pretraining objectives

fail to capture structure. Thus, emulation learning emerges as an appropriate tool to study

structure in creative works: in this section, we will consider how our framework allows us

to learn more human-like and structure-aware policies, π∗(τ |x), but also to better study

human intentionality, qθ(τ |g)

s1 s2 s3 g

a1 a2 a3

Place
Lead

Section
Transition

Background
Paragraph

Draft Draft +
Lead

Draft + Lead +
Transition

News
article

Figure 4.3: Observability of the story-
structuring task: We assume that only
the final news article, g, is observ-
able. We assume each action, at
corresponds to a structural decision
(e.g. “place lead”, “section transi-
tion”) and each state-space st con-
tains the draft with all realizations
of structural decisions so far.

Story-Structuring as Emulation Learning Now, let us

formalize story-structuring as an emulation learning

problem and discuss the challenges that emerge.

In previous sections, we focused on emulating the

beginning (i.e. news-finding) and in the middle (i.e.

source-finding) of the news creation process. Thus,

previously, τ ∗ terminated well before any final observ-

able goal state g existed and we performed emulation

on inferences from goal states (i.e. in news-finding,

we emulated importance, inferred from the article

and it’s homepage placement; in source-finding, we

emulated source mixtures, again inferred from the

article). Here, our emulation goals are closer to

observed news articles.

Let us formalize these goals. Let an action be a structural decision at∈A (e.g., in news,

at = “place the lead”, “supply background”, “introduce consequences/expectations” or

“segment/transition”). A state st∈S is the the work with a realization of structural decisions
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Cheat-Sheet: Emulation Learning for Story-Structuring

Latent actions are structural decisions are made by the writer; we focus on learning an inverse model to
read structure from text and a transition model to realize those actions in an article.

a at (action) — structural decisions: discourse roles, outline. Also called “control codes” a⃗.
s st (state) — st is the draft after realizing structural decisions a<t (up to t). (§4.1, §4.2.1.1, Fig. 4.3).
x x (starting context) — conditioning information for state-transition generation (e.g. headline or

full article s0, templates or prompts).(§4.1, §4.2, §4.3)..
g g (goal state) — The published news article structured according to actions by the writer (§4.1,

§4.2.1.1, Fig. 4.3).
τ τ (trajectory) — Sequence of structural decisions and their realization in state space (§4.1, §4.2.1.1).
P P (st+1 | at, st) (state-space / transition model) — realizes actions (structural decisions) as text. In

essense, a generator trained with different methods to maintain structural coherence based on
actions. (§4.2.3.2, §4.2.3.3, §4.3.2, §4.4).

q qθ(τ | g), qθ(a | g) (inverse model) — predicts structural decisions from text, used to steer structure
during generation to raise label likelihood. (§4.2.3.1, Eqs. 4.2–4.5, §4.3.2.3).

π π(τ | x), π(at+1 | st) (policy model) — chooses structural actions. The planner in planner–executor
view. (We do not train, instead provide gold structures a⃗.) (§4.1, §4.2, §4.4).

made at that point in the writing process (e.g. “a background paragraph”, “section”,

“lead”). As shown in Figure 4.3, let a trajectory be the sequence τ = (a1:T ), and let the goal

state be the finalized article g∈S. For story-structuring, our inverse objective qθ(τ | g) is to

infer latent actions, or structural decisions, producing chunks of text (e.g. paragraphs) in

the observed document — we will train these, in the methods that use them, using labeled

datasets, as in Chapter 3. The policy goal of emulation learning in this task is to learn not only

(1) a policy function, π̂(a|x) that makes structural decisions that are human-like, but also (2)

a state-transition function, p(st+1|a1...t, s1...t) that generates the realization of the action a.

This formulation again suggests a planner–realizer (or hierarchical emulation learning view

of narrative assembly: (1) a policy model π(τ |x) produces a structural sketch a1, . . . at (or

alternatively π∗(at+1|st) selects a single structural action) and (2) a realization process, or

transition model p(st+1|a1...t, s1...t) instantiates that sketch in natural language — producing,

as a final output, a human article g. (We note the similarities with our approach in Section

3.4, which also incorporated a high-level planner and a lower-level query generator.)
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Chapter 4 Overview

In Chapter 4, State-Space Realization in Emulation Learning, we will study how action

and state-space progressions can together be modeled, to bring us closer to observable

goal states g. This section will unfold as follows. The first part of this Chapter

will introduce three techniques for realizing actions a1, ...at, or reaching the goal-states

we desire: another name for this is to learn the transition function, P (st+1|st, a1...t).

In Section 4.2, I formally introduce the story-structuring task and describe how

an explicit action-controller can be used to guide progression in the state-space;

concretely, we will learn a classifier to assess p(s|a) directly; this will help us guiding

the state-space transition model P̂ (st|a, st−1) to align with the expert P ∗(st|a, st−1).

I will then contrast this, in Section 4.3, a beam-search approach that guides states

softly, via sampling. Finally, I will introduce classifier-free guidance, in Section 4.4, a

steering approach for realizing actions. Then we will then concern ourselves with

qθ(τ |g), or more generally, what emulation can tell us about human behavior. We

will introduce a human-behavioral analysis in Section 4.5, showing how the latent

structures experts developed for explaining news structure: knowledge of one, we

find, can give knowledge of others. We will close, in Section 4.6 with an example

outside of journalism, showing how more structural awareness can help interpret

complex relations in legal texts.

Works Discussed:
▷ Spangher et al. (2022)“. Sequentially Controlled Text Generation”. Findings of the Association for Computational Linguistics:

EMNLP 2022.

▷ Spangher et al. (2025)“. DiscoSum: Discourse-aware News Summarization”. arXiv preprint arXiv:2506.06930.

▷ Sanchez et al. (2024)“. Stay on Topic with Classifier-Free Guidance”. International Conference on Machine Learning

▷ Spangher et al. (2021)“. Multitask semi-supervised learning for class-imbalanced discourse classification”. arXiv preprint

arXiv:2101.00389

▷ Spangher et al. (2024)“. LegalDiscourse: Interpreting when laws apply and to whom”. Proceedings of the 2024 Conference of

NAACL-HLT
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Figure 4.4: Here, we study the task of sequentially-controlled generation: generating documents
exhibiting structure given by a sequence of local control codes. Shown is a news article
with its Van Dĳk structure [25] and headline. Our models take as input the headline and
discourse tags and generate a sequence of sentences.

4.2 Controlling the Structure of Generated Text

The macro-structure of text (i.e. its discourse structure [207], shown in Figure 4.4) impacts

both human and machine comprehension [455, 456, 457, 458]. Although naive language

models generate impressively fluent text [147, 459, 460], the text is structurally dissimilar

to human-written text (Figure 4.2, Section 4.2.7). Even the well-known Ovid’s Unicorn

generation, which resembles a natural news article on the surface, exhibits unnatural

structure (see Table 4.1). As discussed in Section 4.1, structural decisions are actions [446]:

outline-driven writing, adherence to structural form (e.g. the inverse pyramid) and structural

critiques are all decisions that human writers make while producing their final outputs.

Indeed, given our observations in Chapter 2 and 3 – that pretrained models do not always

learn how to mimic these actions in creative contexts – it is unsurprising that actions

governing the structure of a work should also fail to be learned. Although prior research

have focused on content-planning using keywords [450], plot-design [461] and entity

tracking [462], discourse/action-oriented control has been relatively understudied. We will

apply emulation as a framework for studying structuring as a trajectory of actions a1, a2, . . .

(i.e. structural decisions) and states, s1, s2, . . . (i.e. realizations of these decision). I will

introduce, in this Section, our first attempt to model the transition function, p(st+1|st, a1,...t)

to generate structured states. In doing so, I will introduce the basic goals and concepts in
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this section.

4.2.1 Task Definition

We start with a basic view of structure, shown in Figure 4.4 and Table 4.1: structure, here,

is a sequence of structural tags, or discourse tags (Main Event, Current Context, detailed

in Section 4.2.1.1). Our action space is derived from this schema a1=“Write Main Event”,

a2 =“Write Current Context”, etc. and state space is s1 =“Current Draft + Main Event”,

s2 =“Current Draft + Current Context”.

Our task in this section is to learn a transition model, P̂ (st|s0, a1...t), a model that will

realize a sequence of structural control codes1. As input to this model, we assume a

headline sentence, s0, and a sequence of control codes a⃗ = a1, ..., aS of length S (i.e., one

for each sentence we wish to generate in the document. Adjacent codes can be of the same

type.) We wish to produce, as output, a document g of length S sentences, with sentences

g = g1, ..., gS , each composed of a sequence of words gt = xt,1, ..., xt,nk
of length nk.

We define the sequentially controlled text generation objective, our transition model, as:

p(g|⃗a, s0) =
S∏
k=1

nk∏
i=1

p(xk,i|xk,<i, g<k, a⃗)︸ ︷︷ ︸
t1: word likelihood

(4.1)

where xi is a word in sentence k, xk,<i are the preceding words, g<k are the preceding

sentences (including the headline, s0). ak is the control code for k. We assume that a⃗, the

entire sequence of control-codes for a document, is given.

4.2.1.1 Control Codes

Now we describe more about our “control codes” or “structural actions”: let us define

our specific choice of structural vocabulary. Our structural vocabulary, as stated, is based

on discourse: i.e. the functional role sentences play in a document’s larger argumentative

1In this section, we use the terms “discourse element” and “control code” simultaneously.
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0 In a shocking finding, scientist discovered a herd of unicorns living in
a remote, previously unexplored valley, in the Andes Mountains. Even
more surprising to the researchers was the fact that the unicorns spoke
perfect English.

(Prompt) Main Event

1 The scientist named the population, after their distinctive horn, Ovid’s
Unicorn.

Main Event

2 These four-horned, silver-white unicorns were previously unknown to
science.

Current Context

3 Now, after almost two centuries, the mystery of what sparked this odd
phenomenon is finally solved.

Evaluation

4 Dr. Jorge Pérez, an evolutionary biologist from the University of La Paz,
and several companions, were exploring the Andes Mountains when
they found a small valley, with no other animals or humans.

Previous Event

5 Pérez noticed that the valley had what appeared to be a natural fountain,
surrounded by two peaks of rock and silver snow.

Anecdotal Event

6 Pérez and the others then ventured further into the valley. Previous Event
7 “By the time we reached the top of one peak, the water looked blue, with

some crystals on top,” said Pérez.
Anecdotal Event

8 Pérez and his friends were astonished to see the unicorn herd. Anecdotal Event
9 These creatures could be seen from the air without having to move too

much to see them – they were so close they could touch their horns.
Anecdotal Event

10 While examining these bizarre creatures the scientists discovered that
the creatures also spoke some fairly regular English.

Main Event

11 Pérez stated, “We can see, for example, that they have a common ‘lan-
guage,’ something like a dialect or dialectic.”

Evaluation

12 Dr. Pérez believes that the unicorns may have originated in Argentina,
where the animals were believed to be descendants of a lost race of people
who lived there before the arrival of humans in those parts of South
America.

Historical Event

13 While their origins are still unclear, some believe that perhaps the creatures
were created when a human and a unicorn met each other in a time before
human civilization.

Evaluation

14 According to Pérez, “In South America, such incidents seem to be quite
common.”

Evaluation

15 However, Pérez also pointed out that it is likely that the only way of
knowing for sure if unicorns are indeed the descendants of a lost alien
race is through DNA.

Expectation

16 “But they seem to be able to communicate in English quite well, which I
believe is a sign of evolution, or at least a change in social organization,”
said the scientist.

Evaluation

Table 4.1: Naïve GPT-2 output, while superficially containing familiar news elements,
deviates from human news structure. To quantify structural atypicality, we train a bigram
tag model p(at+1|at) on [130]’s discourse-labeled dataset. Human (test set) log likelihood
are −1.28/ − 1.60/ − 2.01 (5th/50th/95th perc.), whereas the Ovid’s Unicorn sequence
scores −2.24 — less likely than 95% of typical articles. Two notable irregularities: (i) a
second Main Event appears late (row 10) after a long block of Anecdotal Event sentences
(rows 5–9), and (ii) extended anecdotal runs precede key background and synthesis,
patterns that are rare in human-written news.
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purpose. We use a news discourse schema proposed by Van Dĳk [25]. Choubey et al. [463]

apply this schema and annotate a dataset, NewsDiscourse, consisting of 802 articles from 3

outlets2, tagged on the sentence level. Their schema consists of 9 classes: {Main Event,

Consequence, Current Context, Previous Event, Historical Event, Anecdotal Event,

Evaluation, Expectation }.3. Although each sentence is tagged with a code, codes often

repeat. For example, an entire paragraph can be tagged with Main Event sentences. We

show a partial sample in Figure 4.4. We adopt this schema to describe each news article’s

structure. We seek frame structural control as more general and abstract than the specific

kind of schema we use, though.

4.2.2 Our Approach

We use Bayes rule to factorize t1 into:

t1 = p(xk,i|xk,<i,g<k, s0)
p(⃗a|xk,i, xk,<i, g<k, s0)

p(⃗a|g<k, s0)

∝ p(xk,i|xk,<i, g<k, s0)︸ ︷︷ ︸
t2: naive word likelihood

p(⃗a|xk,i, xk,<i, g<k, s0)︸ ︷︷ ︸
t3: class likelihood

(4.2)

t2 is calculated using a standard pretrained language model (PTLM) and t3 is calculated by

a trained discriminator (or equivalently, inverse-action model qθ(a|g)). qθ(a|g), here, guides

(or equivalently, controls) our transition model p(g|⃗a, s0) to push it more in the direction

of the structural tags. This factorization allows us to maximally re-use naively trained

language models (i.e. t2 stays frozen) and, as we show, is more resource efficient than

fine-tuning a prompt-based model.

2nytimes.com, reuters.com and xinhuanet.com
3For a detailed class description, [26]
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4.2.2.1 Past and Future Structural Awareness

Now we can use our method and task in a way that gives us real behavioral insights.

Specifically: how much does awareness of the surrounding structure of the piece matter,

for generating structurally sound text? In a simple example, imagine that you are tasked

with: Write a “Related Works” section. Would it help to know the past structure of the article

(e.g. it is coming after the “Discussion” section)? How about the full structure (e.g. after the

“Introduction” but before the “Conclusion”)? To answer this question, we approximate t3

three different ways:

Local-Only t3 ≈ p(ak|xk,i, xk,<i, g<k, s0) (4.3)

In the local-only model, we assume each control code ak is conditionally independent

of other control codes given xk,i. Thus, our generator model t1 is made aware only

of local structure: the control code ak pertaining to the current sentence, gk. Because

of this conditional independence assumption, local-only control is similar to prior work

that used only single-control codes, where the goal was to generate a single sentence

p(x|a) =
∏n

i=1 p(xi|a) [464]. However, we show that we can remove these independence

assumptions and study more complicated structural control which, as we will show,

produces more coherent output.

Past-Aware: t3 ≈
k∏
j=1

p(aj|xk,i, xk,<i, g<j, a<j, s0) (4.4)

In the past-aware model, we assume autoregressive dependence between control codes,

conditioned on x. Control codes for future sentences, a>k, are conditionally independent.

In Equation 4.1, this results in xk,i being dependent on ak and the sequence of control codes,

a<k. To reprise our “write a Related Works section” anecdote, this is analogous to: “the

past sections are: Introduction”; compared with “the past sections are: Introduction, Problem
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Figure 4.5: Generation process. First, we perturb the output of a language model using
a structurally-aware classifier to approximate p(xi|xk,<i, g<k)p(⃗a|xk,≤i, g<k) and generate
word xi by sampling from the perturbed distribution . When we generate an < eos >
token, we edit the sentence. We use a discriminator to identify class-salient words to mask,
generating masked sentence M , and infill to boost class likelihood.

Statement, Methods, Experiments...”.

Full-Sequence: t3 =
S∏
j=1

p(aj|xk,i, xk,<i, g<k, a<j, s0) (4.5)

In the full-sequence model, we make no conditional independence assumptions. Again,

in the context of our “write a Related Works section” anecdote, this is like saying “the past

sections are “Introduction”, “Methods”, ... and the future sections are: Conclusion”. We can

restrict both the past-aware and the full-sequence approximations to a sliding window

around sentence k4. We can also add a prior on p(⃗a) to induce a discount factor5. This

focuses the generator on control code ak and down-weights surrounding control codes. In

the next section, we show how to model these objectives. We first describe the discriminator

we use as our controller, then our generation and editing techniques.

4.2.3 Additional Methodological Approaches

As described in Section 4.2.2, we can efficiently train a generative state-space transition

model P (g|⃗a, s0) by combining a naively-trained language model with a discriminator.

Hence, the discriminator is the main architectural component that allows us to incorporate inter-

4i.e. t3 ranges only from j = k − w...k + w instead of the full sequence of sentences. In practice, we use
w = 3.

5The form of our prior is: t3 =
∏S
j=1m(i, j)p(aj |xj,i, xj,<i, g<k, a<j), where m(i, j) = b|i−j|. We experi-

ment with b = [.33, .66, 1].
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dependencies between control code sequences. We start by describing how our discriminator

models different degrees of structural awareness (Equations 4.3, 4.4 and 4.5) in Section

4.2.3.1. We design a generation pipeline to balance structural and local awareness. The flow

we use to accomplish this is depicted in Figure 4.5. The first step is Generation. Here,

we sample each word, xi using techniques described in Section 4.2.3.2 which allow us

to leverage our discriminator to impose structural control. When we have completed a

sentence, we move to Editing. Here, we edit the sentence to further impose local control on

each sentence, updating x to optimize a variation of Equation 4.1: p(xi|x−i, ak), discussed

in Section 4.2.3.3.

4.2.3.1 Discriminator

The discriminator we construct takes as input a sequence of sentences (g) and a sequence

of local control tags (⃗a) – as such, it is literally the inverse-action model, qθ(a|g) in emulation

learning, where g is a set of generated sentences. The goal of the discriminator in this

Section can be seen as a critic to align the structure of the generated text, â1, â2, . . . with the

desired structure, a∗1, a∗2 . . ..

Our architecture combines a sentence-classification model, similar to that used in [145],

with a separate label embedding architecture to incorporate knowledge of a<j . Hence, we

can make predictions for aj based not only on x, but prior tags, a<j , allowing us to model

structural dependencies (Equation 4.2). For a full description, see [26]. We train it to model

local-only, past-aware and full-sequence control variants expressed in Section 4.2.2: we

train separate prediction heads to make predictions on ak−w, ...ak, ...ak+w, i.e. labels from

−w, ...,+w steps away from current sentence k6. For local-only control (Equation 4.3) we

only use predicted probabilities from the main head, k. In past-aware control (Equation

4.4), we multiply predicted probabilities from heads prior to the current sentence < k, and

6Note: we still factor label-sequences autoregressively, as in Equations 4.4 and 4.5 and learn each prediction
head separately. However, keeping separate heads allows the model more flexibility in predicting how
attributes of a sentence might predict future or past tags. Preliminary experiments show that this approach
outperforms learning a single head for all labels.
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for full-sequence control, we multiply predicted probabilities from all heads.7 We now

describe how we use these predictions.

4.2.3.2 Generation

We combine our discriminator’s predictions with a naive PTLM to solve Equation 4.2 two

ways: Hidden-State Control, based on [465] and Direct Probability, based on [466].

Hidden-State Control (HSC): Wolf et al. [467]’s GPT-2 implementation caches hidden

states H to produce logits approximating p(xi|x<i). We perturb these hidden states H ,

resulting in Ĥ that produce logits approximating Equation 4.1 instead. We generate H

from a naive PTLM and use this to make a prediction ĉ using our discriminator. We then

calculate the loss L(â, a) and backpropagate to H to derive Ĥ .

Direct-Probability Control (DPC): We calculate p(xi|x<i, g<s) to identify the 200 most

likely xi under the naive language model, |xi,j|200j=0. Then we calculate p(as|xi,j, x<i, g<s, a−s)

for each xi,j using our discriminator. We directly multiply these probabilities to calculate

Equation 4.18. Note that the HSC and DPC algorithms are extensions of previous work:

the difference is that here they are used to model control code sequences rather than single

tags. The key components that allow this is our discriminator, which makes predictions based on

label sequences, and our algorithm which, as shown in Figure 4.5, increments codes each time an

<eos> token is generated.

4.2.3.3 Editing

After we have finished generating a sentence, we edit it to introduce more discourse

markers of the local control code. We identify words in our input sequence that have the

7For the editing operation, the discriminator is trained without the contexualizing layer (i.e. Transformer
and ai layers are not used) because gradients need to be computed that pertain only to the sentence being
edited, not previous sentences.

8Note that DPC has the advantage of being simpler to implement and batch-parallelizable. However, the
restriction to the top k = 200 words selected according to p(xi|x<i, g<s) means that we might be limiting
discriminator perturbation of word-selection.
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Headline UPDATE 1-Belarus food retailer lines up landmark overseas IPO

Main Event SILVER SPRING, Colo. (AP) — A company in Finland is poised to list its first
international grocery chain in the United States after a yearlong search, raising
concerns about potential corporate conflicts of interest and legal issues around
using foreign intellectual property.<|endoftext|>

Previous
Event

The world’s largest retailer of meat and fish products hopes to become one day
the leader in convenience groceries.<|endoftext|>

Expecta-
tion

It says it could become a leader in fresh fruits and vegetables, as
well.<|endoftext|>

Evaluation About 300 Finnish companies have applied to list on the New York Stock Exchange
under a new plan to bypass the U. S. government and create ”licenses” that allow
them in many other countries, according to a regulatory filing.<|endoftext|>

Evaluation The European Union prohibits using foreign intellectual property for purposes
outside the country, and Finland’s National Stock Exchange does not require
approval before selling a company’lls share in its new company.<|endoftext|>

Evaluation "What’s at stake here is transparency, a sense of fairness to all the stakehold-
ers.<|endoftext|>

Evaluation I don’t think it’s right for companies to have intellectual property rights," says
Michael Vakilainen, an independent analyst who has tracked the company since
2008.<|endoftext|>

Expecta-
tion

He says there are potential conflicts of interest, because one partner is the
government.<|endoftext|>

Expecta-
tion

"What if you’re a government contractor?"<|endoftext|>

Table 4.2: Sample document generated. Generation Method = Direct Prob. Control.
Structure = Past Aware. Edited = False. (Hyperparams = γ = .75, b = .33)

most impact on control-code prediction by using the gradient on our input sentence of the

discriminator’s loss onto tokens and masking full words, following Ross, Marasović, and

Peters [468]. We use only the current sentence prediction made by our discriminator (i.e.

Equation 4.3), so that we impose local control on the sequence even in settings where the

generator imposes structural control.

We cull the high-gradient words based on heuristics9 to encourage the editor to introduce

explicit discourse markers. We fine-tune a label-aware infilling model [469] to generate

candidate edits10 given the masked input. We mask and infill until we have generated a

9Words that are not proper nouns, named entities (except the DATE class) or adjectives, as we find these
categories are more likely to be topic words spuriously correlated with control-codes.

10A T5 model trained using a specific input template incorporating the label. E.g. label: Background.
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Figure 4.6: Discriminator performance on test data. F1 scores for p(aj|X<k, x<i, a<j)
predictions. Sentence index k and word index i are fixed: we show error for using the
current sentence to predict all past, current and future labels.

sentence that has an increased likelihood p(ak|x̂k) > p(ak|xk), and generate edit candidates

(n = 10). We select edits on the basis of class likelihood and perplexity11. For more

comparison and distinction from previous work for both Generation and Editing, see [26].

4.2.4 Datasets and Schema

As stated in Section 4.2.1.1, the form of sequential control we study is discourse: i.e. the

functional role sentences play in a document’s larger argumentative purpose. We adopt

this schema to describe each news article’s structure. We also use a dataset of unlabeled

news articles12 to fine-tune a GPT-2 model for news. We sample 30,000 documents from this

dataset in a manner so that the distribution of sentence-lengths matches the distribution of

sentence lengths in the Choubey et al. [463] dataset.

4.2.5 Implementation Details

We fine-tune aGPT2-basemodel on a large news corpus with a max word-piece length=204813.

We use this to generate naive PTLM language-modeling as well as sentence-embeddings

text: The senator <MASK> to the courtroom to <MASK>.
11Perplexity of the entire generated document so far is used as a selection criteria, PPL(xk ⊕X<k), to

encourage edits preserving the logical flow of the document.
12kaggle.com/snapcrack/all-the-news. Dataset originally collected from archive.org. We filter to

articles from nytimes.com and reuters.com.
13Rather than 1024 in [147]. We observe that > 99% of human-generated news articles were shorter than

2048 word pieces.
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in our Discrimination model. Further implementation details are discussed in [26]. We

discuss the discriminator results here briefly. As shown in Figure 4.6, the primary head, p,

has a Micro F1-score of .65, which approaches state-of-the-art on this dataset14. However,

performance degrades rapidly for heads farther from p. For more results on discriminator

performance, including experimental variations, see [26].

4.2.6 Experiments

We sample 10 documents from the test set of our discourse dataset (n = 200) to test different

pipeline settings. The input to our models is a headline (as a prompt) and the full sequence

of gold-truth discourse labels of that document.

4.2.6.1 Baselines

We compare our experimental pipelines (Section 4.5.1) with the following baselines: (1)

Naive GPT-2 generation given only the headline as input (i.e. no control codes), (2) a

fine-tuned Prompting approach and (3) the original Human-written articles.

For (2), we directly train a class-conditional language model to generate text by including

labels in the prompt, as in [464]. Local-only prompting is achieved by only including the

local control code (and prior generated sentences) in the prompt, and updating the prompt

to generate a new sentence. For past-aware prompting, we include all control codes prior

to our current sentence in the prompt, and update on every new sentence. Finally, for

full-sequence prompting, we including the full sequence of control codes in the prompt.

(See [26] for more details and examples of prompt design.) For each of these baselines, we

test with and without editing (with the human-written text being edited by our algorithm

in Human and with the generated text in all other trials being edited).

14.71 Micro-F1 in Spangher et al. [145], which used auxiliary datasets.
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4.2.6.2 Evaluation

For all pipelines, we select the best hyperparameter configurations based on perplexity and

model-assigned class likelihood. Then, we manually annotate each generated document for

4 metrics: Accuracy (0-1)15 Grammar (1-5)16, Logical Flow (1-5)17 and Topicality (1-5)18. We

recruit two expert annotators with journalism experience to perform annotations blindly

without awareness to which generation pipeline was used, and find moderate agreement

κ ∈ [.36, .55] across all categories. For more details, see [26]. We record model-dependent

and non-model automatic metrics used by See et al. [470], described further in [26].

4.2.7 Results

4.2.7.1 Best Overall Trial

We show automatic and human metrics for the subset of pipelines with top-performing

hyperparameters in Table 4.3. In general, the highest-performing generation pipelines are

all variations of DPC with either past-aware, or full-sequence structural control. We observe

that DPC with past-aware control and editing has the highest class-label accuracy, nearly

approaching the human trials. The top performing pipelines for grammar and topicality

are DPC with full-Sequence control and without editing. GPT-2 performed best only for

Logical Flow, which was surprising but could perhaps be because the unconstrained nature

of GPT-2’s generation allowed it to hallucinate a flow that seemed consistent even if it was

poorly structured.

15Accuracy: how close a generated sentence matches the discourse function of the gold-truth label for that
sentence.

16Grammar: how grammatical and locally coherent a sentence is
17Logical Flow: how well a sentence functions in the flow of the story
18How well each sentence corresponds to the original headline of the article.
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Human-Annotated Metrics Automatic Metrics

Gener-
ation

Label
Acc. ↑
(0-100)

Gram-
mar ↑
(1-5)

Logical
Flow ↑
(1-5)

On-
Topic ↑

(1-5)

Perplex.
↓

Diverse
Ngrams
↑ (%)

Sent.
Len.**

Unseen
Words
↓ (%)

GPT-2 20.0/64.4 4.2/4.5 4.7/4.3 4.6/4.2 48.2/45.4 7.1/8.3 24.9/38.8 4.7/3.2

Gen-Base:
Prompt

L 22.2/51.1 2.8/3.9 2.4/3.0 2.3/2.8 24.4/43.4 3.7/6.5 39.7/32.4 10.6/8.7
P 20.0/31.1 2.9/3.6 2.4/2.9 2.3/3.7 52.2/32.0 5.0/4.5 35.0/44.5 9.3/7.1
F 46.7/64.4 4.4/4.4 3.6/3.7 3.9/3.5 42.5/49.2 7.3/7.8 35.5/42.6 4.6/4.9

Method
#1: HSC

L 28.9/42.2 3.3/3.7 2.7/3.2 3.1/3.4 246/115 7.0/6.9 16.2/17.5 8.0/6.9
P 44.4/60.0 3.4/3.8 3.0/3.0 3.2/3.3 178/147 7.5/7.5 14.8/18.8 8.1/6.7
F 55.6/68.9 3.5/4.2 4.0/3.7 4.2/4.3 134/129 7.2/7.8 17.3/20.7 7.0/7.1

Method
#2: DPC

L 44.4/64.4 4.0/4.4 3.6/4.1 3.8/3.5 42.1/39.9 5.8/8.3 24.8/42.6 4.7/3.0
P 64.4/88.9 4.5/4.6 4.4/4.3 4.4/4.5 37.0/42.2 7.9/8.4 33.1/42.7 3.9/3.1
F 66.7/68.9 4.7/4.5 4.3/4.3 4.7/4.4 42.3/45.6 8.0/8.1 28.2/40.4 4.3/3.3

Human 93.3/95.6 4.9/4.7 4.9/4.7 4.9/4.9 34.2/41.0 8.7/8.7 37.9/39.6 4.2/4.5

Table 4.3: Metrics on different trial runs. L: Local-Context only, P: Past only, F: Full sequence.
Each cell shows Unedited/Edited variants. (Hyperparams = γ = .75, b = .33). ** Optimal
sentence length is determined relative human generation, i.e. min |x− 37.9|.

4.2.7.2 Effect of Different Pipeline Components

We show the distributional shifts in performance across all trials, in Figures 4.7, 4.8.

Structural control has a largely positive effect on generated text. In Figure 4.7, we find that

Full-Sequence models are, on average, able to generate the most label-accurate sentences

with the best grammar, logical flow and topicality. Finally, editing improves accuracy,

grammar and logical flow (Figure 4.8.) The original human-generated text is our gold-

standard, and it is highly class-accurate, grammatical, coherent and topical. Interestingly,

as seen in Table 4.3, editing can also be applied to human-written text to boost label accuracy,

but at the expense of coherence.
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Figure 4.7: Comparison of different structural-control methods across different pipelines
and hyper-parameters.

4.2.8 Discussion

We set out to answer two questions in this research: (1) whether we could impose structural

control over generated documents and (2) what kinds of structural control (local-only,

past-aware, or full-sequence) had the greatest effect on discourse, flow, topicality and

grammaticality. Our novel pipelines, which extend various discriminator-based approaches

for generation and editing, approach human-level performance. However, a gap between

our model’s output and human-generated text still remains across all metrics.

Insight #1: Some structural information improves all metrics of quality. Our structural

exploration suggests that, for the best-performing pipelines, past structural information

(along with editing) boosts class accuracy the most, but knowledge of the full-sequence

does not. In the analogy given in the Introduction, this equates to: to write a “Related

Works” section, it helps to know that it comes after the “Introduction” vs. the “Discussion”,
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Figure 4.8: Effect of editing across different pipelines and hyper-parameters.

but not information of what sections come after. This is perhaps because enough signal is

already given by the past sequence and the full sequence just adds more noise. However,

full-sequence information does yield the best grammar and topicality. This might indicate

a regularizing role played by the full-sequence. In general, we suspect that past-aware

modeling and editing both push the model more towards the class label at the expense of

topicality, flow and grammar, while full-sequence does the opposite. In practice, some

combination of these pipeline components might be desired.

Insight #2: Weak discriminators can still impose accurate control. At .61 macro F1, our

discriminator is a relatively weak classifier. Previous work in classifier-based controlled

text generation used large training datasets and classifiers that routinely scored above .8 F1

[465, 466]. The weakness of our discriminator is one reason why HSC may have performed

poorly. However, in other trials we see strong accuracy. Thus, even with a weak classifier,

we can control generation. This might be because even a weak discriminator can still give

relative differences between generation that does or does match the control code.

Insight #3: Evaluating text candidates using multiple model’s perplexity might result in

better selections. Just as surprisingly, editing also has an overall average positive effect on

generation accuracy and generation quality (Figure 4.8). We had hypothesized that, because
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the editor makes locally-aware infilling decisions, it would improve class-accuracy but hurt

other metrics of document quality, like topicality and flow. Indeed, for the top-performing

trials, like DPC and Human, Editing only improves class accuracy. However, grammar

and flow improves in other trials. This could be because, as mentioned in Section 4.2.3.3,

we selected candidates based on how well they make sense in the document. This also

suggests that using multiple PTLMs combines different virtues of each model.

Error Analysis: We observed that sentence tokenizing remained a huge challenge. Many

of the grammar errors that our annotators observed were from sentences that ended early,

i.e. after decimal points. Indeed, the correlation between sentence-length and grammar is

relatively high (r = .34). One reason for this could be that error-prone sentence tokenizing

models provided faulty training data during pretrainining of LMs. This will continue to

hinder document-level structural work, which often relies on a model accurately ending a

sentence. Another observation, in Table 4.3, is that perplexity doesn’t necessarily correlate

with human judgements of quality, especially for more complex writing like Financial news.

Summary We have formalized a novel direction in controlled text generation: sequentially

controlled text generation. We extended different techniques in controlled text generation

to fit this direction, and have shown how a news discourse dataset can be used to produce

news articles exhibiting human-like structure. We have explored what degrees of structural

awareness yield the most human-like output: more structural control yields higher-quality

output. And, we shown how to combine structural control with local editing. We have

probed different parts of our pipeline to show the effects of each part.
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4.3 A Beam-Search Based Approach to Generating Struc-

tural Outputs

Figure 4.9: Comparative presentation
of the Apollo 11 moon landing news
across multiple platforms by The New
York Times. This example showcases the
diversity in content formatting and lan-
guage adaptation for different audiences:
a detailed traditional print article, a con-
cise Instagram post, and a professionally
oriented LinkedIn summary. Each plat-
form reflects specific editorial strategies
to engage its unique audience effectively.

In the prior section, we used our inverse-

action model qθ(a|g) to guide the transition model

p(st+1|st, a1,...t) to perform structured story gen-

eration, introducing key concepts in how to

implementing emulation for structural output.

However, in that setup, we did not enforce factu-

ality in the output, simply structure. In this task,

we make two extensions. Firstly, we extend the

starting state s0 to be, not just a headline, but

a whole article. The goal state g is now taken

to be a summary of that article. As before, we

also assume a set of control codes, a⃗ to drive

the structure of that summary, but we now en-

force that the outputs are factually consistent

restructuring of the input s0.

As a practical task to frame this extension, consider Figure 4.9. Modern news organiza-

tions like the New York Times increasingly publish news summaries in a variety of media (e.g.

print newspapers, mobile apps, podcasts, and social media) each with distinct audience

expectations and content formats [471, 472]. For instance, an outlet like The New York

Times may produce a child-friendly podcast edition that uses simplified language and

gentler framing, a condensed Instagram version with concise, visually engaging snippets,

and a longer, more detailed write-up on LinkedIn or the newspaper’s own website to cater

to professional or academic readers. Transforming a single piece of news into multiple

styles and lengths, while preserving its core narrative and emphasis, demands nuanced
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control over discourse structure [473, 474]. Despite the growing interest in automated

news summarization [475, 476, 460, 477, 478], existing dataset approaches have overlooked

this need19. To bridge these gaps, we propose a novel discourse-structure-aware summa-

rization task that emphasizes the modeling of structural discourse beyond surface-level

summarization coherence or factual correctness.

First, we introduce DiscoSum: a Discourse-aware News Summarization dataset.

DiscoSum represents the largest and most diverse collection of professionally-written

cross-platform news summaries, comprising 20k news articles from 23 different news

outlets across 10 countries, multiply paired with over 100k human-written summaries

from 4 distinct platforms: Facebook, Instagram, Twitter and newsletters. Next, we develop

a novel discourse schema to describe structural components of news summaries, consisting

of five sentence-level discourse labels. Finally, we also propose a novel discourse-driven

decoding method that employs a beam search technique to evaluate and select the optimal

subsequent sentences for inclusion in summaries. We evaluate our method by developing

both surface-level and structural metrics to assess the effectiveness of models in producing

structure-aware summaries. Our human and automated evaluations confirm that our

approach effectively maintains narrative fidelity and adheres to structural demands.

4.3.1 Structural Summarization Task and Dataset

In this section, we describe the task formulation and evaluation metrics of structural sum-

marization (Section 4.3.1.1). We introduce our proposed dataset including its composition

and annotation process (Section 4.3.1.2).

4.3.1.1 Task Formulation

Let s0 denote the original news document, which can consist of multiple paragraphs or

sentences. We define a desired sequence of discourse labels as a = (a1, a2, . . . , an), where

19See [19] for a deeper comparison to Grusky, Naaman, and Artzi [479].

174



4.3 A Beam-Search Based Approach to Generating Structural Outputs

each ai represents a discourse label (for instance, “contextual details,” or “introductory

elements,” etc.) that the i-th sentence of the summary should fulfill. The objective is to

generate a summary g = (g1, g2, . . . , gm), where each gi is a sentence containing information

in s0, coherent, and follows. In the structured summarization, like structured generation

before, we focus on the transition model – we assume that the user supplies the target label

sequence a⃗ a priori20. Predicting an optimal structure for new input is left for future work.

We employ the same discriminator (i.e. our inverse-action model ã = qθ(a|g)) that, given

a sentence, predicts its discourse label. Let â = (â1, â2, . . . , âm) be the sequence of labels

predicted by qθ(ai|gi) ∀gi ∈ g. We require â to align with a, the user-supplied labels:

âi = ai for each position i. Although the most straightforward scenario sets m = n, such

that the summary contains exactly n sentences, more flexible variants may allow for slight

deviations while still ensuring that core positions match the targeted labels.

4.3.1.2 Dataset

We seek to construct a large, diverse dataset of news articles matched with multiple

different summaries of each article, written by journalists, across different social media

platforms and newsletters. We collect a list of 23 different major national and international

news outlets21 from 10 different countries (U.S., China, India, U.K., Germany, etc.), in order

to capture a range of different discourse styles across different writing styles.

Social Media Collection We collect two years of social media posts on Twitter, Facebook

and Instagram from each of the 23 news outlets. To do so, we build semi-automated

scrolling agents that scroll down the feed of each news outlet’s media page. We collect the

full HTML of each post, including the text of each post as well as any linked urls. In total,

20This mirrors real newsroom workflows where social–media editors routinely apply pre–defined templates
for different platforms. For example, commercial content–automation systems such as Automated Insights
populate fixed headline and body layouts, and studies in discourse analysis show that canonical forms recur
across news [126, 480] and even classical essay writing [481].

21The New York Times, The Wall Street Journal, Washington Post, AP News, BBC, Reuters, The Guardian,
Bloomberg, Times of India, Le Monde, The New Zurich Times, El País, China Daily, Los Angeles Times,
Chicago Tribune, The Boston Globe, USA Today, The Sydney Morning Herald, The Japan News, De Zeit
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Category Count
# of Outlets 23
# of News Articles 20,811
# of Facebook Posts 18,275
# of Instagram Posts 66,030
# of Twitter Posts 8,977
# of Newsletters 10,506

Table 4.4: Overall counts of different cat-
egories of data in our dataset.

Types Counts
Overall 45,195
News Article→ Tweet 12,516
News Article→ Facebook Post 15,645
News Article→ Instagram Post 7,738
News Article→ Newsletter Post 9,296

Table 4.5: Statistics on the news article to
summary graph, showing the number of
edges between post types.

we collect 8,977 Twitter posts, 18,275 Facebook posts, and 66,030 Instagram posts (see ?? for

more details). In order to identify structural summaries, we further filter these posts down

to posts that contain 50 or more characters. This eliminates around 30% of our data.

Newsletter Collection We select 7 newsletter brands published by news outlets,22 specifi-

cally searching for those that make all past newsletters within each brand available online

in archives. We build scrapers to collect full HTML of each newsletter and collect 2 years

worth of data, or over 20,000 newsletters. A newsletter often summarizes many news

articles at the same time, yet our task is a single-document summarization task. Hence,

we need to parse the text of each newsletter so that blocks of newsletter text correspond

to single news article. This is text segmentation with overlapping segments, since links in

newsletters might require larger text segments. To accomplish this, we prompted LLMs23,

building off prior work demonstrating LLM effectiveness for text segmentation tasks [482,

483, 484, 485]. We selected a prompt configuration that instructs an LLM to (1) identify

all news content links, (2) extract the surrounding text context for each link, (3) exclude

boilerplate content, and (4) maintain the exact original text. To mitigate potential biases

or hallucinations, we implemented a verification procedure where the largest extracted

blocks are cross-checked against the LLM’s own outputs in multiple iterations, with

any inconsistencies flagged for manual review. Manual inspection confirmed the LLM’s

22Axios “The Finish Line”; the New York Times, “The Morning”, the LA Times, “California Today”; The Skimm,
“The Daily Skimm”; The Daily Beast, “Cheat Sheet”; Semafor, “Newsletters”; CNN, “Reliable Sources”

23Prompts shown in [19].
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capability in this task, with segmentation quality exceeding 95% accuracy in our audits

across a randomly sampled set of 100 newsletters. In total, we generate 10,506 summaries

from the newsletters we collect.

News Article Collection We collect a superset of news article URLs from all the social

media posts and newsletters described above. Following Spangher et al. [273], we scrape

Wayback Machine for the HTML of each news article. We use an LLM (GPT-4) to clean the

HTML to extract a full, complete news article (we find existing libraries24 are insufficient).

We prompt the model to filter out non-news segments (e.g., login prompts, advertisements,

and extraneous content), while retaining only article content.

News Article and Summary Matching For many social media posts, we have a URL in

the post that gives us an explicit match; however, for others we do not (e.g. Instagram

does not allow URLs in posts). To discover as many edges as possible, we decide to match

any news article from any outlet with any social media post or newsletter summary. To

do so, we employ a two-step rank-and-check method. Specifically, we first use SBERT

[221] to embed news articles and summaries; for each news article, we found the 10 closest

summaries as candidates. Then, we use GPT-4 to perform a strict pairwise comparison for

each candidate, returning only binary "yes" or "no" judgments on whether they describe

the same news story, following the methodology validated in [211]25. In manual audits,

this matching step exceeds 95% accuracy. Not only does this approach help us recover all

summaries produced by a single news outlet for each article they publish, but we can see

how other news outlets cover the same news event.

Dataset Splits For all experiments, we use a 70%/20%/10% train/validation/test (14k/4k/2k

article-summary pairs) split of the DiscoSum dataset. This split is made at the article level

to prevent leakage, so all summaries of the same article are kept within the same split.

24https://newspaper4k.readthedocs.io/en/latest/
25Authors found that LLMs could be used to verify cross-document event coreference with high perfor-

mance.
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4.3.2 Method

In this section, we outline our methods for generating structure-aware summaries. First we

describe two necessary components: (1) the discourse schema we use to drive structural

summarization, and (2) a sentence-level labeler, that predicts discourse labels, which we

use to guide generations (Section 4.3.2.1, Section 4.3.2.2). Then, we propose two algorithms

to generate summaries conforming to a target discourse sequence a (Section 4.3.2.3): (1) an

edit-based approach and (2) a beam search method.

4.3.2.1 Discourse Schema Generation

To formalize a notion of “structured” summaries, we seek to construct a low-dimensional,

novel discourse schema to describe social media and newsletter summaries. First, we use

an automated process to generate a schema, in contrast to prior work using manual analysis

to develop schemas, typically based on O(10) examples26. Inspired by Pham et al. [332], we

first ask an LLM to generate descriptive labels for the discourse role of each sentence in

all of our summaries (O(100k) sentences). Then, we embed these labels using an SBERT

embedding model [221], and cluster these embeddings using k-means.

From this embedding process, we identify five distinct clusters that represent different

narrative roles: Introductory Elements, Contextual Details, Event Narration, Source

Attribution and Engagement Directive). See [19] for definitions of each discourse role.

We confirm the validity of this schema by asking two professional journalists to assess the

quality and ideate for missing role labels. The choice of specifically five discourse labels

was informed by extensive experimentation. While alternative parameter choices (e.g., k=7,

13, or 23) were feasible in our clustering approach, we selected a 5-dimensional schema

based on human evaluation trials that showed high inter-annotator agreement (κ = 0.615)

for assessing the validity of these labels. Though a 5-dimensional schema may appear

limited for capturing the full complexity of news discourse structures—particularly across

26For example, Van Dĳk [126] builds their schema based on an analysis of 12 news articles.
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cross-cultural or niche news scenarios—it provides a strong foundation for this pilot study

in discourse-aware summarization.

4.3.2.2 Discriminator

Next, in order to guide our structure-aware generation (Section 4.3.2.3), we construct a

sentence-level discriminator (or, equivalently, an inverse action model qθ(a|g)) that assigns

discourse labels to sentences, following Spangher et al. [145, 486]. Note that this is the

same discriminator used in Section 4.2. The discriminator was trained on the train split

of DiscoSum. To verify the quality of the validation set, we had two expert annotators

independently label a subset of 500 sentences. The trained labeler achieved a high accuracy

rate of over 90% on the validation set, with strong performance across all five discourse

categories (the lowest per-category F1 score still exceeded 0.85, see [19] for more details).

This high level of accuracy is crucial for its role in the summarization process, where it is

later used as a reward guidance mechanism to ensure that generated summaries adhere to

the required discourse structure.

4.3.2.3 Generation Methods

Iterative Editing Our first strategy approaches summary generation as an iterative refine-

ment process. We begin by prompting the LLM to produce a complete initial summary, then

repeatedly “edit” any sentences that do not fulfill their intended discourse labels. After the

initial summary is generated, we use our discriminator qθ(a|g) to identify which sentences

carry the wrong labels. We then remove these “mismatched” sentences and generate new

candidate sentences. Over several iterations, the summary gradually “evolves” to match

the sequence a. By focusing only on individual problematic sentences, this approach

preserves what is already correct in the summary. It can also adapt to complex label

sequences without having to restart the entire generation each time a mismatch is found.

Sentence-Level Beam Search In contrast to iteratively fixing errors, our second strategy
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Algorithm 2 Sentence-Level Discourse-Driven Beam Search (beam width k)
Require: Source doc s0; target labels a = (a1, . . . , aN); beam width k
Ensure: Summary g = ⟨g1, . . . , gN⟩

1: B ← {(⟨ ⟩, 0)} ▷ each item is (hypothesis h, score s)
2: for i← 1 to N do
3: B′ ← ∅
4: for (h, s) ∈ B do ▷ h = ⟨g1, . . . , gi−1⟩
5: candidates← LLM_propose(h, s0, k) ▷ up to k next-sentence candidates c
6: for c ∈ candidates do
7: h′ ← h ∥ c ▷ append c to the hypothesis
8: s′ ← s + α log LLM(c | s0, h) + β log qθ(ai | h′) ▷ LLM(·) = base generator

likelihood; qθ(·) = inverse-action/labeler score for target label ai on the updated hypothesis h′
9: B′ ← B′ ∪ {(h′, s′)}

10: end for
11: end for
12: B ← TopK(B′, k)
13: end for
14: return argmax(h,s)∈B s

constructs a label-compliant summary sentence by sentence from scratch in a beam search

style [487]. We begin with an empty summary and consider one position at a time (e.g.,

first the sentence that should have the “introductory elements” label, then the sentence that

should have the “contextual details” label, and so on). At each step i, the LLM generates

several candidate sentences, candidates (forming a sentence-level “beam”), which are then

evaluated by q(a|·). We choose the candidate that best matches the target label ai. This

sentence is appended to the current partial summary. By evaluating multiple options

at each step and selecting the best match for the desired label, this approach ensures

each summary sentence follows the intended label sequence. The detailed procedure is

described as Algorithm 2.

4.3.3 Experiments

In this section, we present our experimental setup (Section 4.3.4) and evaluation framework

for structured summarization with target discourse labels (Section 4.3.4.1). We introduce

baseline models and methods being benchmarked (Section 4.3.4.2). Next, we present
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Original News Article

MADISON HEIGHTS, Mich. (AP) — You may have already seen them in restaurants: waist-high
machines that can greet guests, lead them to their tables, deliver food and drinks and ferry dirty
dishes to the kitchen. Some have cat-like faces and even purr when you scratch their heads. But
are robot waiters the future? It’s a question the restaurant industry is increasingly trying to
answer. Many think robot waiters are the solution to the industry’s labor shortages. Sales of
them have been growing rapidly in recent years, with tens of thousands now gliding through
dining rooms worldwide... (continues for 823 more words...)
Target Labels: Event Narration, Contextual Details, Event Narration, Engagement Directive,
Event Narration

Structured Summary

Event Narration Robot waiters are redefining the future of the restaurant industry.
Contextual Details The innovative technology, first introduced at a Michigan restaurant,

has been gaining popularity worldwide, as they bring efficiency,
convenience, and a touch of novelty to the dining experience.

Event Narration Robot waiters are increasingly being adopted by restaurants world-
wide, offering benefits such as reduced labor costs, improved accuracy,
and enhanced customer engagement.

Engagement Directive As the technology continues to evolve, we can expect to see robot
waiters becoming more sophisticated, with advanced navigation
systems and the ability to learn and adapt to individual customers’
preferences.

Event Narration With the potential to transform the dining experience, robot waiters
are here to stay.

Table 4.6: An example news article (top), an example structural sequence inputted by the
user to guide summarization (middle), and an example summary generated (bottom).

empirical results (Section 4.3.4.3), human preference evaluation (Section 4.3.4.4) and the

analysis on the impact of different beam sizes (Section 4.3.4.5).

4.3.4 Implementation Details

For vanilla generation, we sample the best output among 16 trials based on automated

discourse labeler. In the Sentence-Level Beam Search, we employ BeamSize = 16. We

fine-tuned the LLaMa-3-8B model using the PEFT method on the train split of DiscoSum.

This fine-tuning approach reduced the validation loss significantly over 20 epochs. Key

hyperparameters included a learning rate of 5e-05 and a multi-GPU distributed training
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setup across eight Nvidia 4090. For each generation in our experiments, we randomly

generate a list of structural tags, to simulate the widest possible set of user inputs. This

also prevented us from overfitting on commonly observed discourse structures.

4.3.4.1 Evaluation Protocols

Content Accuracy Evaluation. To quantify how the content accuracy of generated news

summaries, we employ several metrics: ROUGE-L [488], originally designed for summariza-

tion, measures the longest common subsequence of tokens between the generated summary

and a reference summary. FactCC. [489], a model-based metric that classifies whether

each generated sentence is factually consistent with the source document. AlignScore, a

consistency metric that measures the factual correspondence between texts.

Structural Evaluation. To assess the alignment between the generated summary g and the

expected discourse structure a, we derive a predicted label sequence â from g via:

â = Labeler(gi) ∀gi ∈ g

where Labeler is either the human annotator or our discriminator, qθ(ai|gi). We employ

three metrics to quantify the closeness of â to the target label sequence a: Longest Common

Subsequence (LCS), to measure the length of the longest subsequence common to â and a (a

higher LCS value indicates that the predicted labels closely preserve the intended label

order.) Match Score assesses the number of exact position-wise matches between â and

a. This metric reflects the precision in predicting each label at its correct position in the

sequence. Levenshtein Distance. [490] calculates the minimum number of single-element

edits (insertions, deletions, or substitutions) required to transform â into a. A lower

Levenshtein Distance indicates a higher degree of sequence similarity.

Human Evaluation. Two human annotators manually assessed the discourse structure of

each generated summary. Annotators evaluated 100 summaries per model.
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4.3.4.2 Baselines

To evaluate the effectiveness of our proposed approach, we benchmark it against a range

of baseline models that vary in architecture, training paradigms, and optimization goals.

These models include both proprietary systems and open-source alternatives, providing a

comprehensive overview of current state-of-the-art capabilities in text summarization.

Close-source LLMs. These models, such as DeepSeek-V3 27, Claude-3-5-sonnet 28, and

GPT-4o 29, are included primarily to help us gauge how well our approach performs with

cutting-edge technology, even if these models are not the primary focus of our evaluation.

Open-Source LLMs. Models like Qwen-2.5 and various configurations of LLaMa-3-8B

represent more accessible options for academic research. Each variant of LLaMa-3-8B

— whether it be the vanilla version, edit-based modifications, or fine-tuned iterations —

serves to illustrate different improvements and trade-offs.

4.3.4.3 Main Results

Content Accuracy Evaluation. Table 4.7 shows both surface-level and structural evaluations

for a variety of models. Despite fluctuations in ROUGE-L, FactCC, and AlignScore

across different systems, our approach—specifically the beam search variant of LLaMa-

3-8B—maintains competitive performance in surface-level metrics. Notably, our beam

search method achieves the highest AlignScore (0.3890), demonstrating superior factual

consistency with source documents compared to both proprietary and other open-source

models. This is particularly significant as it shows that structural improvements can be

achieved without sacrificing—and in fact can enhance—factual alignment with source

content. We also include the reasoning–centric model O1, which outperforms GPT-4o on

several metrics yet still lags behind our LLaMa-3-8B beam–search variant.

27https://api-docs.deepseek.com/news/news1226
28https://www.anthropic.com/claude/sonnet
29https://openai.com/index/hello-gpt-4o/
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Content Accuracy Auto Struct. Human Struct.

Models R-L (%) ↑ FactCC ↑ AlignScore ↑ MS ↑ Lev ↓ LCS ↑ MS ↑ Lev ↓ LCS ↑

Proprietary Models

DeepSeek-V3 47.15 0.47 0.3886 0.26 0.64 0.65 0.24 0.65 0.65
Claude 34.30 0.70 0.3882 0.25 0.68 0.64 0.20 0.49 0.75
GPT-4o 29.51 0.63 0.3884 0.11 0.80 0.62 0.15 0.58 0.68
O1 44.65 0.50 - 0.28 0.66 0.54 - - -

Open-sourced Models

Qwen-2.5 40.82 0.58 0.3888 0.24 0.66 0.65 0.15 0.52 0.64
LLaMa-3-8B 47.18 0.50 0.3496 0.21 0.77 0.36 0.24 0.49 0.65

– Finetuned 22.01 0.61 0.3495 0.14 0.77 0.45 0.18 0.55 0.72
– Edit-based 15.28 0.59 - 0.51 0.48 0.56 0.24 0.65 0.36
– Beam Search 42.98 0.64 0.3890 0.72 0.32 0.68 0.55 0.17 0.87

Table 4.7: Comparison of models on various metrics. Metrics are categorized into content
accuracy and structural assessments, both automated and human-annotated. The metrics
include ROUGE-L (%), FactCC, AlignScore (for factual consistency), Match Score (MS),
Levenshtein Distance (Lev), and Longest Common Subsequence (LCS). ↑ for higher is
better and ↓ for lower is better. Boldfaced numbers highlight the best performance, while
underscored numbers denote notable but secondary performances in each category.

Structural Evaluation. Significantly, our approach excels in both automatic and manual

structural evaluations, where it demonstrates notable enhancements over both open-source

baselines and the more sophisticated proprietary models. The beam search variant

of LLaMa-3-8B consistently aligns more closely with the designated discourse label

sequences, evidenced by its superior Match Score and reduced Levenshtein Distance. This

enhancement in structural alignment underscores the model’s ability to adhere rigorously

to specified rhetorical structures without significant loss in surface-level accuracy. By

achieving an effective balance between textual overlap and structural fidelity, our method

significantly enhances the controllability and coherence of generated text.

Performances of Edit-based and Finetuned Methods. The edit-based method demon-

strates a promising capability in enhancing the structural alignment of generated summaries

with the desired discourse labels, as evidenced by its strong performance in structural

evaluations. However, this structural fidelity comes at a cost to the content accuracy

and fluency, where the ROUGE-L scores considerably lower than other methods. This

184



4.3 A Beam-Search Based Approach to Generating Structural Outputs

Figure 4.10: Mean Reciprocal Rank (MRR)
scores from human preference evaluations
of summary quality across three methods:
Vanilla LLaMa-3-8B, Fine-tuned LLaMa-3-
8B, and Beam Search LLaMa-3-8B.

Figure 4.11: Levenshtein Distance and
Longest Common Subsequence (LCS), by
beam size. The graph shows a general
decrease in Levenshtein Distance and a
gradual increase in LCS scores, indicating
improved structural alignment with larger
beam sizes.

decline indicates that while the edit-based approach effectively molds the structure of the

summaries, it may deviate significantly from the original text’s semantic and syntactic

properties. The finetuned variant of the LLaMa-3-8B model, on the other hand, shows

a less impressive adaptation to the task. Despite the potential for finetuning to tailor

model behavior closely to specific datasets or task requirements, the observed performance

metrics suggest a failure to capture the deeper, structural nuances necessary for this specific

discourse-driven summarization task. The low scores imply that mere finetuning may

be insufficient for tasks that require a deep understanding and transformation of text

according to complex labeling schemes. This underperformance highlights the need for

more advanced approaches.

4.3.4.4 Human Evaluation of Summary Quality

We recruited two annotators to ranked the summaries based on content accuracy and

structural adherence for three summary generation methods—Vanilla LLaMA-3-8B, its

fine-tuned counterpart, and our beam search method. Our results, depicted in Figure

4.10, demonstrate a significant superiority of the beam search method, achieving a mean
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reciprocal rank (MRR) of 0.71, compared to 0.55 and 0.58 for the Vanilla and fine-tuned.

4.3.4.5 The Impact of Beam Size

Our analysis incorporated a range of beam sizes from 2 to 16. As the beam size increases,

we observe an overall improvement in the LCS scores, indicating enhanced alignment with

the target discourse structure. Conversely, the Levenshtein Distance, which measures the

edit distance necessary to align the predicted sequence with the target, exhibits a general

decrease as the beam size increases, suggesting that larger beam sizes improve structural

alignment. The observed trends open several avenues for future research. One potential

area is the exploration of adaptive beam sizes that could dynamically adjust based on the

complexity of the text or the specific requirements of the discourse structure at different

points in a document. Additionally, while beam search techniques enhance the quality

and relevance of summaries during the inference time, integrating these high-quality

summaries during training could potentially elevate the model’s overall performance.

Future research could harness these refined outputs to boost the training process.

Summary We introduced a structural summarization approach that integrates discourse

into the summarization of news articles, emphasizing factual consistency and structural

alignment. Our novel dataset, DiscoSum, and evaluation metrics underscore the effective-

ness of our methods, particularly the beam search technique, which ensures summaries

are both contextually relevant and structurally precise. The results demonstrate significant

improvements over traditional methods, suggesting that our approach enhances automated

news summarization across media platforms. The shift towards a deeper understanding of

discourse structures not only challenges existing models but also opens pathways for more

sophisticated approaches to news narrative reconstruction. [491, 492, 493, 212].
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4.4 Classifier Free Guidance

We have already observed repeatedly, in Chapters 2, 3 and 4 that policies learned implicitly

during pretraining, π(llm)(a|x), do not seem to align with human policies π∗(a|x). For

example, in Sections 3.3 and 3.4, we observed that models lack creativity and tend to

repeat queries and sources; in Sections 4.2 and 4.3, we observed that generations without

structural control can meander. Simultaneously, or perhaps as a result, the transition-model’s

generations, P (st+1|st, a1...t) lack coherence over long-horizon trajectories. In the prior

sections, Section 4.2 and 4.3, we addressed these by augmenting the transition model

p(st+1|st, at) with a discriminator, or the inverse-action model, qθ(a|g). However, is this

necessary? If qθ(a|g) is noisy, is our ability to perform story structuring not at risk?

Similar degenerative problems have been observed in text-to-image-generation: models

ignore parts of the prompt or introduce extra objects [494]. Classifier-Free Guidance (CFG)

has emerged in this field as an elegant training-free approach to address this [495]. In

this Section, we will now explore CFG as a potential alternative to using inverse-action

models qθ(a|g) for guidance (Section 4.2) or selection (Section 4.3). In CFG, the generative

model itself is used sans modifications during inference to encourage guidance. While CFG

might be a lightweight solution to prompt-misadherence in LLMs, it has not previously

been applied in the autoregressive text-generation setting. There are many reasons to

hypothesize CFG might not transfer: in text-to-image generation, the prompts are simple

descriptions and outputs are fixed-size [496]. In language modeling, prompts can be

highly complex and multipart, and outputs are autoregressive and unbounded. Increasing

prompt adherence seems to be a promising direction for incorporating flexible, structural

control; in this section, we will text whether CFG can be an effective, lightweight approach

for achieving this goal.
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4.4.1 Problem Statement

To understand how Classifier-Free Guidance (CFG) might be applied for structural control

in LLMs, I will first give a broader overview and context for steering and controllability in

generative models more generally. In this section, we first discuss the origins of CFG in

text-to-image generation, and then discuss how autoregressive language modeling differs.

4.4.1.1 Classifier Guidance in Text-to-Image Models

Suppose P(g) is an unconditional model for image g and P(g|a) is a conditioned model

with conditioning a (e.g. a label or text prompt). Generative models usually generate g

by decoding from an abstract semantic space, z. In Classifier Guidance [497], the name

in text-to-image research for the controlled generation methods that we covered in Sections

4.2, an auxiliary classifier Pϕ(a|g) guides sampling to increase the likelihood of a in g. This

modification results in the following:

P̂(g|a) ∝ Pθ(g) · Pϕ(a|g)γ (4.6)

where γ is called the guidance strength. As Equation 4.6 show, “guidance” is a reweighting

of Pθ according to the classifier likelihood Pϕ. γ = 0 reduces 4.6 to the unconditional

model P (g), while γ = 1 reduces 4.6 to the conditional generation P (g|a). When γ > 1, P̂

overemphasizes the conditioning (albeit at the cost of diversity [497]). This approach has

been successfully used in a variety of works [498, 499, 500]

Classifier-Free Guidance, [495] observed that by using Bayes rule, we can eliminate

the external classifier. By training the same model Pθ to support both conditional and

unconditional generation (via conditioning dropout), we can rewrite the second term in

Equation 4.6 as Pθ(g|a) ∝ Pθ(g|a)
Pθ(g)

. Sampling is performed according to:

P̂θ(g|a) ∝
Pθ(g|a)γ
Pθ(g)γ−1

. (4.7)
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Modeling P̂θ(x|c) with a diffusion process [501] reduces to predicting the distribution of

the sample noise ϵt,

log P̂θ(ϵt|gt+1, a) = γ logPθ(ϵt|gt+1, a)− (γ − 1) logPθ(ϵt|gt+1). (4.8)

We can rewrite Equation 4.8 as:

log P̂θ(ϵt|gt+1, a) = logPθ(ϵt|gt+1) + γ
(
logPθ(ϵt|gt+1, a)− logPθ(ϵt|gt+1)

)
(4.9)

Aside from its probabilistic interpretation, this equation can be seen as a vector operation

in latent space: we take a step of size γ away from the unconditional vector in the direction

of the conditioning. Thus, we introduce an important tool: Negative Prompting [502, 503,

504, 505]. Negative prompting has been proven to be effective in many situations: striking

examples have been generated by interpolations latent space [506, 507, 508]. Moreover, the

initial point does not have to be the unconditional latent, but any representation we want

to move away from. We introduce the "negative conditioning" or "negative prompt" a, as

well as a generalized equation resulting in Equation 4.8 when a = ∅:

log P̂θ(ϵt|gt+1, a, a) = logPθ(ϵt|gt+1, a) + γ
(
logPθ(ϵt|gt+1, a)− logPθ(ϵt|gt+1, a)

)
(4.10)

4.4.1.2 Classifier-Free Guidance of Language Models

Unlike in image generation, where g has fixed dimensionality and all dimensions generated

dependently, in language modeling, g is autoregressive and unbounded. Here, we apply CFG

to the logits of next-token predictions. Logits, as linear transformers of word embeddings

[509, 510], capture capture semantic meaning. Using the logits also avoids network editing

[511] and is architecture agnostic. In modern LLMs, conditioning a is typically a prompt

[459] which can be a context, an instruction, or the beginning of some text. Here, we assign

the prompt the symbol a to connect it to the idea of control-codes, used in Sections 4.2 and
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LLM( a1 , a2 , a3 , a4 ) → “A powerful 6.2 earthquake hit Los Angeles on Monday.”

LLM( a1 , a2 , a3 , a4 ) → “No deaths or major damage have so far been reported, but rescue crews are active.”

LLM( a1 , a2 , a3 , a4 ) → “One survivor said her cats freaked out more than she did.”

LLM( a1 , a2 , a3 , a4 ) → “The Northridge Earthquake, on January 17, 1994, had a magnitude of 6.7.”

Figure 4.12: Toy example showing how CFG with negative prompting might be used to
guide a state-transition model, p(st+1|st, a1,...t). a, here, is a sequence of discourse tags (e.g.
a1 =Main Event, a2 =Current Context, a3 =Anecdotal Event, a4 =Historical Event) or
another representation of desired structure (e.g. a1 =“outline element #1”, a2 =“outline
element #2...), along with a prompt: “Write me a news story”. In each line, we shift our focus
by setting at as the positive prompt, a and a−t as the negative prompt, a 29.

4.3, although prompts can be more flexible and general than the discourse codes we used

previously. (We will discuss at the end of this Section how to use CFG to learn a better

transition model, P (st+1|st, a1...t), realizing a sequence of structural codes a.)

In language modeling, in general, we wish to generate text g which has a high

likelihood of starting with the prompt, a. We define the γ-reweighted distribution

P̂(g|a) ∝ P(g) · P(a|g)γ , and approximate it with CFG as P̂(g|a) ∝ P(g|a)γ
P(g)γ−1 . In the case of

autoregressive language models, Pθ(g) =
∏T

i Pθ(gi|gj<i), we can unroll the formulation

and obtain Equation 4.7 again:

P̂θ(g|a) ∝
T∏
i=1

P̂θ(gi|gj<i, a) ∝
T∏
i=1

Pθ(gi|gj<i, a)γ
Pθ(gi|gj<i)γ−1

∝ Pθ(g|a)γ
Pθ(g)γ−1

(4.11)

An important observation we have is that, while conditioned diffusion models cannot

predict unconditioned distributions without extra training, language models handle both

Pθ(g|a) and Pθ(g) naturally due to being trained on finite context windows. In other words,

dropping the prefix a is a natural feature. We thus sample the i-th token gi in logit space:

log P̂θ(gi|gj<i, a) = logPθ(gi|gj<i) + γ
(
logPθ(gi|gj<i, a)− logPθ(gi|gj<i)

)
(4.12)
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This formulation can also be extended to accommodate Negative prompting, as in

Equation 4.10. Negative prompting is the key to how CFG can support a more robust

transition model P (st+1|st, a1...t). Instead of using the discriminator, or inverse-model, qθ(at|g)

to guide the transition model, P (st+1|st, a1...t) towards generating with adherence to at, as

we did in Sections 4.2 and 4.3, we can use negative prompting29 by setting a = at and

a = a−t in Equation 4.10 – an example of this process is shown in Figure 4.12. In other

words, by setting the current action at to the positive prompt, a and the rest of the actions

a−t = a1, . . . , at−1, at+1... to the negative prompt, a, we can guide generation towards

adhering to the current action over the others. We will test this concept in Section 4.4.2.5,

but now, we will continue on to the next section, where we introduce our experiments

exploring the effects of CFG on different variations of prompting. We note that recent

works have explored variations of CFG in language models [512, 513, 514]. However, these

works have been limited to specific areas of generation, like toxicity. Our work is a more

general case and a broader exploration of CFG including experiments across a wide array of

benchmarks, prompt variations, human-preference experiments and computing-analysis.

See [388] for more details on these works.

4.4.2 Experiments

In this section we show that Classifier-Free Guidance reliably boosts performance across a

variety of common prompting approaches. In Section 4.4.2.1 we show that CFG boosts

zero-shot performance on a variety of standard NLP benchmarks, including achieving

state-of-the-art performance on LAMBADA with LLaMA-7B. In Section 4.4.2.2 we apply

CFG to Chain-of-Thought prompts [515, 516] an approach to allows the model to reason

first before answering the question. Next, we test the performance of CFG on text-to-text

generation prompts in Section 4.4.2.3. Finally, we show in Section 4.4.2.5 that CFG can be

29Note that, in all three methods introduced in Sections 4.2, 4.3 and 4.4, we do not explore how we will
shift between realizing different at in the sequence a = a1, ...an, beyond simply generating one sentence per
tag. We leave that to future work.
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applied to assistant prompts (i.e. prompts with system-instructions).

4.4.2.1 Basic Prompting: Zero-Shot Prompts

To test basic, zero-shot prompting, we consider a suite of zero-shot benchmarks implemented

in the Language Model Evaluation Harness [517], which includes close-book QA [518,

519], common sense reasoning tasks [520, 521, 522, 523, 524, 525, 526], and sentence

completion-tasks [527]. In these settings, the desired completions are short (often 1-2

tokens), so risks of meandering [26] or degradation [528] are low. We hypothesize that the

main impact of CFG in these settings will be to reduce variance in output choices, as we

explore in Section 4.4.4.

We evaluate the GPT-2 model family[147], the Pythia model family [529] and the LLaMA

model family[530] using different guidance strengths across a range of standard NLP

benchmarks using EleutherAI’s Language Model Evaluation Harness [517] and implement

CFG by starting the unconditional prompt at the last token of the initial prompt. The

results are shown in Table 4.8. For better visualization, the charts for the GPT2 models,

the Pythia models and the LLaMA models over the standard benchmarks are shown in

[388]. We observe that except ARC (challenge) and Winogrande, the boost of performances

from CFG is nontrivial and consistent. The reasons for discrepancies on these tasks are

still unknown. Furthermore, we note that even the smallest LLaMA 7B model achieves

81% accuracy in Lambada (OpenAI) zero-shot benchmark with γ = 1.5, outperforming the

current SOTA (zero-shot) of PaLM-540B (77.9%). Despite the fact that CFG almost doubles

the computation during inference, the comparison is still noteworthy given that other

models with comparable performances on Lambada (OpenAI) have much more parameters

and would still require more compute than LLaMA 7B with CFG. Taken together, we show

that CFG increases performance in basic prompting settings significantly.
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ARC-c ARC-e BoolQ HellaSwag

Baseline Ours Baseline Ours Baseline Ours Baseline Ours

G-s 22.7 23.0 39.5 42.1 48.7 57.0 31.1 31.9
G-m 25.0 23.9 43.6 47.6 58.6 60.1 39.4 40.9
G-l 25.1 24.7 46.6 51.0 60.5 62.1 45.3 47.1
G-xl 28.5 30.0 51.1 56.5 61.8 62.6 50.9 52.4

P-160M 23.5 23.0 39.5 42.2 55.0 58.3 30.1 31.2
P-410M 24.1 23.8 45.7 50.3 60.6 61.2 40.6 41.6
P-1B 27.0 28.0 49.0 54.9 60.7 61.8 47.1 48.9
P-1.4B 28.6 29.6 53.8 59.6 63.0 63.8 52.1 54.3
P-2.8B 33.1 34.5 58.8 65.4 64.7 64.7 59.3 61.9
P-6.9B 35.2 36.1 61.3 67.4 63.7 64.6 64.0 66.5
P-12B 36.9 38.7 64.1 72.6 67.6 67.8 67.3 69.6

L-7B 41.5 43.9 52.5 58.9 73.1 71.8 73.0 76.9
L-13B 47.8 54.2 74.8 79.1 78.0 75.8 79.1 82.1
L-30B 52.9 57.4 78.9 83.2 82.7 80.0 82.6 85.3
L-65B 55.6 59.0 79.7 84.2 84.8 83.0 84.1 86.3

PiQA SciQ TriviaQA WinoGrande LAMBADA

Base Ours Base Ours Base Ours Base Ours Base Ours

G-s 62.5 63.8 64.4 70.8 5.5 6.5 51.6 50.5 32.6 44.6
G-m 66.4 66.9 67.2 76.7 8.3 9.3 53.1 52.1 43.0 55.8
G-l 69.2 70.2 69.4 78.8 11.1 12.0 55.4 54.4 47.7 60.5
G-xl 70.5 71.3 76.1 82.4 14.7 15.2 58.3 55.6 51.2 62.5

P-160M 61.4 62.1 67.0 75.4 4.1 5.3 52.3 51.1 32.8 47.4
P-410M 67.1 67.8 72.1 79.0 7.9 9.1 52.9 50.7 51.3 64.0
P-1B 69.2 70.5 76.0 82.9 12.3 12.3 53.9 51.5 56.2 69.0
P-1.4B 71.1 72.5 79.4 85.1 15.9 15.9 57.4 56.0 61.6 72.7
P-2.8B 73.6 75.8 83.3 88.2 22.1 20.9 60.1 57.9 64.6 76.5
P-6.9B 76.3 77.4 84.3 89.7 28.2 27.2 61.1 60.3 67.1 78.8
P-12B 77.0 78.4 87.7 91.9 33.4 32.1 65.0 63.4 70.4 80.6

L-7B 77.4 79.8 66.3 75.4 56.0 52.7 67.1 65.5 73.6 81.3
L-13B 80.1 80.9 91.1 95.1 62.4 59.8 72.8 71.5 76.2 82.2
L-30B 82.3 82.3 94.3 96.4 69.7 67.9 75.8 74.1 77.5 83.9
L-65B 82.3 82.6 95.1 96.6 73.3 71.8 77.4 76.1 79.1 84.0

Table 4.8: Results of general natural language benchmarks. “G” stands for GPT2, “P” for
Pythia and “L” for LLaMa. In each cell, the first value is the result for γ = 1 (baseline) and
the second value is the result for γ = 1.5 (ours).
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Figure 4.13: CFG’s impact on chain-of-thought prompting (GSM8K dataset). Top: accuracy
on task. Bottom: invalidly-formatted answers. For small γ, CFG increases the % of chains
ending in a valid answer while increasing the model accuracy. For large values, the invalid
% remains small but the accuracy drops.

4.4.2.2 Deliberative Prompting: Chain-of-Thought

A variation on basic prompting is Chain-of-Thought (CoT) prompting [516]. In this setting, the

model is prompted to generate a series of reasoning steps before giving an answer to the task:

i.e. p(wcot, wa|c), where wcot is a set of reasoning steps and wa is the answer. CoT has been

shown to perform well in complex reasoning tasks that cannot be fully addressed by model-

or data-scaling [531]. However, as observed by [516], long reasoning chains can diverge and

either not generate correct answers, or not generate parsable results. We hypothesize CFG

will be able to enforce better reasoning chains with less drift. We evaluate on two arithmetic

reasoning tasks: GSM8K [532] and AQuA [533]. We follow [534]’s few-shot prompt and

use two open source LLM models: WizardLM-30B [535] and Guanaco-65B [536]. As can

be seen in Figure 4.13, ??, using CFG increases the percentage of CoT resulting in valid,

parsable answers. For low guidance strengths, model performances increase. However,

for γ > 1.5, the quality of reasoning chains degrade, and overall the performances drop30.

We anticipate in future work being able to more fully test variations of CFG-weighting on

different parts of the CoT process. For instance, instead of upweighting just wp, we might

upweight wp, wcot, or other variations.

30A qualitative comparison is provided in Table ??, ??.
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4.4.2.3 Long Prompts: Generation

In contrast to basic prompting and CoT-prompting (Sections 4.4.2.1 and 4.4.2.2), where we

primarily expect short answers, here we study tasks where prompts and continuations are

both potentially long sequences of text. We focus on code generation here. In this setting

the quality of answers is highly dependent on the model’s ability to stay on target. We

hypothesize that, in this setting, CFG can effectively enforce adherence to the full prompt.

4.4.2.4 Program synthesis evaluations

Program synthesis presents us with a scenario where adherence to the full prompt is

essential to performance. Additionally, testing CFG on code-related tasks also demonstrates

CFG’s impact over formal language. Here, we prompt GPT-J [537] and CodeGen-350M-

mono [538] for code generations and observe positive results (see [388]), such as an 18%

improvement of the accuracy rate for GPT-J, and a 37% improvement of syntax correctness

rate for CodeGen-350M-mono with positive guidance.

Next, we evaluate CFG on the HumanEval benchmark [539]. The HumanEval benchmark

contains 164 coding tasks in Python, with English prompts given by a function signature

and a docstring. The model generates code-based continuations of the prompt, which are

tested against unit tests to evaluate the correctness of programs. We choose CodeGen-

350M-mono, CodeGen-2B-mono and CodeGen-6B-mono ([538]) which are designed for

Python program synthesis.31 We test different CFG strengths32 and different temperatures,

evaluating at pass@k for k = 1, 10, 100 33. We show the results for temperature= 0.2 in

Table 4.934. The pass@1 rate, we find, increases with CFG across 1 ≤ γ ≤ 1.5 and degrades

thereafter, in accordance with findings in Section 4.4.2.2. The number of tasks where CFG

outperforms is more than the one where CFG underperforms at pass@1 for γ = 1, 1.25 with

31Note: CodeGen-16B-mono is omitted due to compute constraint.
32γ = 1.0, 1.1, 1.25, 1.5, 1.75, 2.0
33The definition of pass@k according to [539]: “k code samples are generated per problem, a problem is

considered solved if any sample passes the unit tests, and the total fraction of problems solved is reported."
34Full HumanEval results are shown in [388]
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CodeGen-350M CodeGen-2B CodeGen-6B

γ k=1 k=10 k=100 k=1 k=10 k=100 k=1 k=10 k=100

1.0 11.0% 17.0% 22.0% 19.5% 25.5% 29.8% 19.5% 25.5% 29.8%
1.1 11.8% 18.1% 20.1% 20.4% 25.4% 28.0% 20.4% 25.4% 28.0%
1.25 11.4% 17.3% 18.9% 19.7% 25.4% 28.0% 19.7% 25.4% 28.0%
1.5 10.9% 16.7% 18.3% 20.9% 26.7% 29.2% 20.9% 26.7% 29.2%
1.75 10.3% 16.0% 18.2% 20.4% 26.2% 28.6% 20.4% 26.2% 28.6%
2.0 8.6% 14.6% 17.6% 16.5% 22.4% 24.4% 16.5% 22.4% 24.4%

Table 4.9: CodeGen results with temperature= 0.2. CFG in nearly all cases increases
performance, but the optimal γ value varies.

CodeGen-350M-mono.35 We note that the improvement from CFG diminishes or harms

performance at high k. Without CFG, many tasks exhibit small nonzero passing rates, while

having 0% rate with CFG. This indicates that larger k significantly boosts the passing rate

of difficult tasks where the rates are low but nonzero. Overall, the consistent improvement

on pass@1 rates and the reduced effect on pass@100 rates support our hypothesis that CFG

strengthens the adherence to the prompt at the small cost to variability/creativity.

4.4.2.5 Negative Prompting: Improving Assistants

Finally, we explore negative prompting in CFG, discussed in Equation 4.10 and in Section

4.4.1.2 as a method for steering our transition model towards action sequences. With negative

prompting, traditionally, the user specifies what they do not want in the output (e.g. “low

resolution” in text-to-image), which is then used to better meet user needs. We explore this

idea, specifically, in the context of chatbots. Chatbots give us a setting where the a =prompt

is expanded into a multi-stage prompt, a1, a2: as in our formulation to structural control.36.

In chatbots, the language model is prompted with a two-part prompt: (1) the instruction,

35See the scatter plot at temperature 0.2, 0.6, 0.8 in [388].
36We note that this extension to basic-prompting stands as a mirror to CoT-prompting’s extension (Section

4.4.2.2). In CoT-prompting, the continuation is expanded to a multi-stage completion; here, the prompt is expanded.

196



4.4 Classifier Free Guidance

Figure 4.14: HumanEval task count com-
parison between γ = 1, 1.25 for CodeGen-
350M-mono.

Figure 4.15: Evaluators (611 votes, 71 voters)
noted that system-prompt adherence is op-
timal at γ = 3 while user-prompt adherence
stays constant.

or “system prompt” which may give contextual information or behavioral guidelines (e.g.

style, alignment, persona, etc.); and (2) the user-prompt, or the user’s query. Adherence

becomes an even greater concern: systems like Alpaca [540] often ignore changes to their

system-prompt, and may even expose models to attacks like prompt injection [541]. We

explore CFG with negative prompting to increase the success of different system prompts.

We set the negative prompt a = a1 (see Equation 4.10) to be the default system-prompt

for our models (i.e. “The prompt below is a question to answer, a task to complete, or a

conversation to respond to; decide which and write an appropriate response.”) and set

a = a2 to be the user-prompt (e.g. “The prompt below is a question to answer, a task

to complete, or a conversation to respond to; decide which and write a sad response.”).

To test this approach with chatbots, we generate system-prompts, n a = a1
= 25, and

user-prompts, n a = a2 = 46, and sample 1740 random combinations of them. In [388] we

include the full list of a = a1 and a = a2 we use. For each (system-prompt, user-prompt)

pair, we use GPT4All-J v1.3-jazzy to generate two completions: one without CFG and

one with, with a guidance strength randomly chosen ∈ 1,2,3,4,5,6. Our hypothesis is that

CFG increases system-prompt following, ideally without hurting user-prompt adherence.
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We run a human preference study on our sampled continuations, where participants are

shown both, blindly, and asked to assess two things: A. which output better follows the

system-prompt, a = a1 and B. which output better follows the user-prompt a = a2. Our

results in Figure 4.15 shows evidence that CFG emphasized the difference between a = a1

and a = a2 more than sampling with a = a2 alone. There is a peak at γ = 3 with 75% of

system-prompt following preference over γ = 1 and user-prompt relevance (52%).

4.4.3 Cost Analysis of CFG: FLOPs and VRAM

In the previous section we showed improvements across a wide array of benchmarks and

contexts. However, CFG imposes computational and memory requirements that vanilla

inference does not. In this Section, we explore these requirements, which are of special

interest to users with compute and memory constraints.

Compute constraints: In terms of computational requirements, CFG requires two passes

through the network, effectively doubling the amount of FLOPs required for inference.

Users who are compute-constrained might wonder if CFG is interesting to them at all, and

if they should not run a model twice as big instead. To answer this question, we calculate

the FLOP for each of the benchmark experiments that we ran in Section 4.4.2.1. We then

compare across model sizes, with and without CFG. We conclude with the surprising

finding that, across 5 out of 9 tasks, there there is a statistically insignificant difference

between using CFG and using vanilla prompting with a model of twice the size at p = .01,

according to ANCOVA regression analysis [542]. Of the significantly different tasks, 2 favor

CFG and 2 favor vanilla. See [388] for more details. In other words this indicates that, overall, a

model using CFG can generally perform just as well as a model twice as large.

Memory constraints: The impact of CFG on VRAM is nuanced. While CFG boosts the

performance of smaller models, it doubles the demands of the kv cache. We conduct a

memory analysis, see [388], to explore the conditions under which CFG trumps using a
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PPL p(y|x) PPL cfg PPL instruct

PPL p(y|x)
PPL cfg 0.94
PPL instruct 0.83 0.7

Table 4.10: Correlation between the perplexities of CFG vs. Instruction-Tuning on the P3
dataset. We seek to identify when CFG is similar to instruction-tuning. Models mostly
agree on the difficulty of input sentences, and in cases where they do not, CFG and
Instruction-tuning have similar top-p overlaps.

larger vanilla model. We find that using CFG vs. a larger model is are highly dependent on

sequence length the user wishes to generate. The doubling of the kv-cache has important

implications, that qualify CFG’s use, and we hope to explore these further, including

memory reduction strategies, in future work.

4.4.4 Explaining the Success of Classifier-Free Guidance

In this section, we seek to explain the impact of Classifier-Free Guidance on generation.

For these tests, we use the Falcon-7b-Base model [543] and, when applicable, compare

against the Falcon-7b-Instruct version. We run these models on a sample dataset of 32, 902

datapoints from P3 [544]. We replicate our findings on the Open-Assistant Dataset [545]

and Redpajama-3b model family37.

Classifier-Free Guidance’s Effect on Sampling Entropy We suspect that CFG, by focusing

P(y|x) on the prompt, will reduce the entropy of the logit distribution. CFG entropy

distribution is significantly lower across generation steps than vanilla prompting, with

a mean of 4.7 vs. 5.4.38. This restricts the number of tokens in the top-p=90% of the

vocabulary distribution. We observe, in Section 4.4.4, that the top tokens re-order, showing

that CFG is not simply having the same effect as temperature.

CFG’s Relation to Instruction Tuning Our next question: how is Classifier-Free Guidance

37https://www.together.xyz/blog/redpajama
38See [388] for more detail)
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Table 4.11: Given the prompt The dragon flew over Paris, France we display, at each
sampling step, the vocabulary ranked for P(wt|w<t) − logP(wT |ŵ) for the next step. We
can see CFG encouraging tokens about flying dragons and Paris, and discouraging other
topics or regions

affecting the vocabulary distribution? We hypothesize that CFG has similar effects to

instruction-tuning, which also encourages a model to focus on the prompt [546]. Although

CFG and Instruction-Tuned model variants have similar entropy across generation samples,

the vocabulary distributions across our samples are largely not overlapping, indicating that

CFG is not having a similar effect as instruction-tuning (see [388]). There are cases where

the two are similar. As shown in Table 4.10, harder phrases for Instruction-Tuned models are

typically where CFG and Instruction-Tuned models align: we observe significant spearman

correlations of rs > .7 between Instruction-Tuned models and CFG. As we explore more in

[388], these correlations are particularly pronounced for longer prompts. We conclude that

CFG is altering the model in ways that might complement instruction-tuning, opening the

door to future explorations.

Visualizing Classifier-Free Guidance Finally, we provide qualitative insights into the
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FUDGE CFG

Sentiment .065 0.312
Toxicity .045 0.523

Table 4.12: Percent increase in sentiment and toxicity under different guidance regimes. We
compare a Classifier-Guided technique, FUDGE, [466] to CFG. (Classification likelihood
judged by a secondary classifier: for sentiment we use [548]’s “positive” label; for toxicity:
we use “not toxic”).

reordering of the vocabulary induced by CFG. We visualize the vocabulary at each timestep

ranked by the difference logP(wt|w<t)− logP(wT |ŵ), showing which tokens are encouraged

or discouraged the most. In Figure 4.11, we prompt a model with c =“The dragon flew

over Paris, France”,c = ∅ and observe that tokens about dragons and Paris get upweighted

while tokens about other locations (“Queensland”), dates (“1913”), or topics (“hostages”,

“voyages”) are downweighted. CFG encourages tokens more related to c.

4.4.5 Discussion

Taken together, our findings indicate that CFG performs extremely well in an language-

modeling setting across a wide variety of prompting techniques. This is perhaps unsurpris-

ing: recent work has demonstrated that language models can be their own reward models

[547]. Indeed, CFG is to classifier-guidance for prompt adherence as Direct Preference

Optimization (DPO) [65] is to Proximal Policy Optimization (PPO) [64]. From this perspec-

tive, one insights from CFG is that language models have even more expressive power

than current prompting approaches are utilizing. Using the language model itself for

guidance, like [65] observed, can be both more effective and efficient than using an external

classifier. To prove this in our case, in Table 4.12, we show a comparison with FUDGE, an

approach to Classifier Guidance in language modeling [466]. For both trials, sentiment

control [548] and toxicity39 control40, CFG was able to steer guidance to a much greater

39https://kaggle.com/competitions/jigsaw-toxic-comment-classification-challenge
40We prompt GPT2 with the prompt “That was a good movie!” for IMDB and “Don’t be mean” for Toxicity.

We use bhadresh-savani/distilbert-base-uncased -emotion and unitary/toxic-bert for sentiment and
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degree (we tune γ as a hyperparameter for both to maximize scores while maintaining

fluency). In addition, because FUDGE must be run on ever time-step, it runs 100x slower

than CFG. In sum, CFG is both more effective and more efficient as a controller, without

requiring any extra training. As researchers have noted, classifier guidance in language

models often struggles from domain-mismatches between LMs and classifiers [549]. This

perhaps can explain another key to CFG’s success, with implications for RLFH and other

auxiliary-model control techniques: no matter how broadly trained a classifier or agent is,

it’s training distribution likely not match pretraining.

However, CFG does come with it’s limitations. in cases where a specific kind of

control is desired, like in the two experiments shown in Table 4.12, CFG’s dependency

on hand-crafted prompts might be problematic. In cases where a specific generic form of

control is desired (e.g. sentiment or toxicity) and a good hand-crafted prompt is NOT easily

found, classifier-guided systems might have an advantage by being less dependent on

specific system-designer prompt choices. We note that this is not the case we explore most

extensively in this work, nor have we found in our extensive experiments across prompting

techniques that this has observably harmed performance, but it must be acknowledged

as as limitation. In future work, we hope to be able to explore prompt-optimizations to

remove this barrier. Other researchers have observed that CFG is also sensitive to γ as

a hyperparameter. Compared with text-to-image generation where optimal γ ∈ 3− 5

is common, the optimal γ values for most of our prompts, except negative prompting,

were small (<2). There are many reasons why text-to-image models might have higher

γ values. In text-to-image generation, the pixel range is (-1, 1), whereas the range for

logits in language modeling is a lot larger. In text-to-image generation, the values are

independent but in text-to-text there’s a softmax, and thus changing the maximum logit

value dramatically alters the whole distribution. The conditional and unconditional

outputs may be more different in text-to-text than in text-to-image, leading to greater

toxicity guidance, respectively, and stevhliu/my_awesome_model and unitary/toxic-bert for evaluation.
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chances of text degenerating. In text-to-image diffusion models, after a very small number

of iterations, the differences between the conditional and the unconditional probability

should be negligible, so a stronger strength might be required.
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4.5 Underlying Semantics of Structural Discourse Benefits

from Multitask Learning

In the previous sections, we have introduced three methods for inducing sequential guidance

and structural control in language models: two of those methods (Sections 4.2 and 4.3)

depended heavily on an inverse-model, qθ(a | x, σ), while the third method, CFG (Section 4.4),

was more flexible to different prompting techniques. In all three methods, a key bottleneck

and source of error emerges. What if we chose a suboptimal action vocabulary,A, or schema σ,

to specify our structural control? Either the wrong discourse schema, learned via qθ(a | x, σ),

or the wrong prompting approach? In Section 3.5 in Chapter 3, we faced the same question

— we were comparing discourse schemas used for source-finding without knowing which

was more optimal. We introduced methods, conditional perplexity and posterior predictive, to

compare one schema against another. Here, we take the opposite approach. Schemata to

describe textual discourse structures have been developed for a large variety of tasks: event

extraction [463], sentiment analysis [550], natural language generation [551], summarization

[457, 552], storyline discovery [553], and even misinformation detection [554, 458]. We

ask the question: what if these schemata share enough similarities, and capture enough

underlying meaning, that small variations in schemata do not matter? In other words, if one

schema gives us enough signal about how another schema would label a text, we might not

need to be so concerned with choosing the right schema.

We treat discourse tagging as learning an inverse model qθ(a | g, σ) that maps an observed

textual state g to a latent discourse action a ∈ A under a chosen schema σ ∈ Σ (e.g., Van

Dĳk/NewsDiscourse, RST, PDTB; discussed in Section 4.5.2). Each dataset Dσ provides

observable labels y ∈ Lσ that we view as schema-specific emissions of the latent action:

pθ(y | x, σ) =
∑
a∈A

Cσ(y | a) qθ(a | x, σ), (4.13)
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where Cσ(y | a) is an (unknown) observation model for schema σ.

We observe that certain discourse schemata, σ, appear to offer similar and complemen-

tary information. For example, Penn Discourse and Rhetorical Structure Theory Treebanks

(PDTB and RST), both tagged on news datasets, offer intrasentential, low-level discourse

information [555, 556], while news discourse schemas offer intersentential, high-level,

domain-specific discourse information [463, 557]. Inspired by [558]’s finding that lower-

level NLP tasks (e.g. part of speech tagging) could aid higher-level tasks (e.g. semantic

role labeling), our central question here becomes: can a multitask approach incorporating

multiple discourse datasets can help us test the degree to which one schema can inform

another? Specifically, by introducing complementary information from auxiliary discourse

tasks, σ, we aim to show that we can increase performance for a primary discourse task’s

underrepresented classes. There is a dual purpose in this experiment. Not only do we aim

to answer a scientific question — how similar are different discourse schemas? — we also

aim to increase our ability to learn inverse models, qθ(a | x, σ) describing any one schema.

Indeed, even as recent advances in NLP allow us to achieve impressive results across a

variety of tasks, discourse learning (often a supervised learning task — as we have framed

it in Sections 3.4, 3.5, 4.2 and 4.3), faces the following challenges: (1) discourse datasets tend

to be very class-imbalanced.41 (2) Discourse learning is a complex task: human annotators

require training to achieve moderate agreement [559]. (3) Discourse learning tends to be

resource-poor, as annotation complexities make large-scale data collection challenging

(Table 4.13). Compounding the problem, a schema often evolves across different annotation

efforts, preventing the compilation of datasets.42

We propose a multitask neural architecture (Section 4.5.1) to address these hypotheses.

We construct tasks from 6 discourse datasets, an events dataset, and an unlabeled news

dataset (Section 4.5.2), including a novel discourse dataset we introduce in this Section.

41For example, of Penn Discourse Tree-Bank’s 48 classes, the top 24 are on average 25 times more common
than the bottom 24 [555].

42See, for instance, datasets based on variations of Van Dĳk’s news discourse schema [25] released in [463],
[557] and the present work.
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Although different datasets are developed under divergent schemas and have different goals,

our framework learns correlations between schemas, and does not “waste” labeling work

done by generations of NLP researchers. Our experiments show that a multitask approach

can help us improve discourse classification on a primary task, NewsDiscourse [463], from a

baseline performance of 62.8% Micro F1 to 67.7%, an increase of 4.9 points (Section 4.5.3),

with the biggest improvements seen in underrepresented classes. On the contrary, two

baselines — data augmentation approaches called Training Data Augmentation (TDA)

and Unsupervised Data Augmentation (UDA) — fail to improve performance. We give

insight into why this occurs (Section 4.5.4). In the multitask approach, the primary task’s

underrepresented labels are correlated with labels in other datasets, giving us proof into

underlying similarities between these datasets. However, if we only provide more data

without any correlated labels (TDA and UDA), we overpredict the overrepresented labels.

We test many other approaches proposed to address class-imbalance and observe similar

negative results [26]. Taken together, this analysis indicates that the signal from labeled

datasets is essential for boosting performance in class-imbalanced settings.

4.5.1 Methodology

We formulate a multitask approach to discourse learning with the NewsDiscourse dataset

as our primary task (Section 4.5.2). Our multitask architecture uses shared encoder layers

and schema/task-specific classification heads.43

4.5.1.0.1 Objective. We minimize a weighted sum of schema-conditioned losses:

min
θ

∑
σ∈Σ

ασ
∑

(xi,yi)∈Dσ

Lσ
(
pθ(yi | xi, σ)

)
, (4.14)

where D = {Dσ}σ∈Σ is the joined dataset across schemas, α = {ασ} are nonnegative

weights, and pθ(y | x, σ) is the schema-specific classifier head. Conceptually, pθ(y | x, σ)

43Our framework can be seen as a multitask feature learning architecture [560].
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factors as in Eq. 4.13, with y an observable schema label and a a latent discourse action governed

by qθ(a | x, σ). In each training step, we sample one schema σ and datum (xi, yi) ∈ Dσ.44

4.5.1.1 Neural Architecture

Our neural architecture (Figure 4.16) consists of a sentence-embedding layer and, in

some experimental variations, embedding augmentations; a classification layer for the

primary schema; and separate classification layers for auxiliary supervised schemas. The

architecture we use to model our supervised schemas is inspired by previous work in

sentence-level tagging and discourse learning [463, 561]. We use RoBERTa-base [562]

to generate sentence embeddings (Figure 4.16). Sentences in each document are read

sequentially by the same model, and the </s> token from each sentence is used as the

sentence-level embedding. The sequence of sentence embeddings is passed through a

Bi-LSTM layer to provide context. These layers are shared between schemas.45

Additionally, we experiment with concatenating different embeddings to the sentence

embeddings to provide document-level and sentence-positional information. We concate-

nate headline embeddings and document embeddings, generated as described in [463], and

sentence-positional embeddings, described in [563].46 Each output embedding is classified

using a schema-specific feed-forward layer.47 Some of our datasets (including our primary

dataset) are multiclass and others are multilabel. We discuss our datasets next.

4.5.2 Datasets

We use 8 datasets in our multitask setup, shown in Table 4.13. Four datasets contain

sentence-level labels and no relational labels; two contain annotations of clausal relations;

one is an events-nugget dataset where labels denote the presence of events in sentences;

44For UDA, which includes unlabeled data, we write (xi[, yi]) and add a consistency loss; see Section 4.5.3.3.
45Variations on our method for generating sentence embeddings are reported in [145]
46For more detail, see [145].
47Variations both of the classification tasks and the loss function, aimed at addressing the class-imbalance

inherent in the VD2dataset, are reported in [145].
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Figure 4.16: Multi-task sentence-Level classification model used for different discourse
schemata. The </s> token in the RoBERTa model is used to generate sentence-level
embeddings, </s>i. Bi-LSTM is used to contextualize these embeddings, ci. Finally, FF
is used to make class predictions, pi = pθ(yi | xi, σ). RoBERTa and Bi-LSTM are shared
between schemas. FF is the only schema-specific layer.

and one is an unlabeled news dataset. For each schema σ, we denote Dσ = {(xi, yi)} with

yi ∈ Lσ as the observable schema label attached to sentence i (Eq. 4.13 linking yi to ai).

Van Dĳk (VD1, VD2, VD3) and Argumentation (ARG) The Van Dĳk Schema, developed

by [25], was applied with no modifications [557] to 50 news articles sampled from the

ACE corpus (VD1). Choubey et al. [463] expanded Van Dĳk’s schema to capture anecdotal

discourse [564] and released a dataset, NewsDiscourse (VD2), consisting of 802 articles

from 3 outlets48. We take VD2as our primary task due to its size. As shown in Table

4.13, VD2has 9 classes: Main Event (M1), Consequence (M2), Current Context (C1),

Previous Event (C2), Historical Event (D1), Anecdotal Event (D2), Evaluation (D3),

Expectation (D4) and Error (E).49 VD2is an imbalanced dataset; its highest-support class

has 1224 samples while its lowest-support has 77. We introduce a novel news discourse

dataset (VD3) following the Van Dĳk Schema. We expand the schema to capture discourse

elements related to “Explanatory Journalism” [565]. VD3contains 67 news articles with

sentence-level labels, sampled from the ACE corpus without redundancy to VD1. We

additionally label 10 articles from VD1and find an interannotator agreement of κ = .6950.

A substantial volume of news discourse is not factual assertion, but analysis, explanation,

48nytimes.com, reuters.com and xinhuanet.com
49For a detailed class description, see [463].
50For more information on the dataset we introduce in this paper, see [145].
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Name Label #Docs #Sents #Label Altered Type Cls Imb.

News discourse corpora
NewsDiscourse VD2 802 18,151 9 No MC 3.01
Van Dĳk [557] VD1 50 1,341 9 No MC 3.81
Van Dĳk (present) VD3 67 2,088 12 No MC 6.36

Argumentation
Argument. ARG 300 11,715 5 No ML 9.35

Discourse relations (filtered / altered)
PDTB∗∗+ PDTB-t 194 12,533 5 Yes ML 2.28
RST∗∗ RST 223 7,964 12 Yes ML 2.90
KBP 14/15∗∗ KBP 677 24,443 4 Yes ML 4.07

Unlabeled news
All-The-News∗∗ U 6,000 177,530 N/A N/A N/A N/A

Table 4.13: List of the datasets used, an acronym, the size, number of labels (k), whether
we processed it, whether each sentence is multiclass (MC) or multilabel (ML) and the
class-imbalance. ** indicates dataset was filtered. + indicates subset of tags was used.
(Class Imb. :=

∑⌊k/2⌋
j=1 nj

⌊k/2⌋

/∑k
j=⌊k/2⌋+1 nj

⌊k/2⌋+1
. nj is size of class j; n1 > · · · > nk).

and prediction [566]. We thus include the Argumentation dataset (ARG) [377], a dataset

consisting of 5 labels applied to 300 news editorials.51 The discourse tags the authors

use to classify sentences are: Anecdote, Assumption, Common-Ground, Statistics, and

Testimony.52 Each of these four datasets assigns a single label to each sentence. We treat

them as multiclass datasets, as shown in Table 4.13.

Penn Discourse Treebank (PDTB) and Rhetorical Structure Theory Treebank (RST)

These discourse datasets each consist of spans of text in articles; labels indicate how

different spans relate to each other. We process each so that sentences are annotated with

the set of all relations occurring at least once in the sentence,53 yielding multilabel y ∈ Lσ

per sentence, and downsample documents so that the distribution of document length

51This dataset contains articles from 3 news outlets: aljazeera.com, foxnews.com and theguardian.com
52These tags share commonalities with Bales’ Interactive Process Analysis categories, which delineate

ways in which group members convince each other of arguments [567, 568], and have been used to analyze
opinion content in news articles [566].

53For more details, see [145].
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matches VD2.54 Some of Van Dĳk’s discourse elements differ based on temporal relation:

for example, some elements describe events occurring before a main event (e.g. Previous

Event (C2)) while others describe events occurring after (e.g. Consequence (M2)). To

introduce more information about temporality, we use PDTB’s tags pertaining to Temporal

relations (we call this filtered dataset PDTB-t). When processed as described above, each

of these datasets assigns multiple labels to each sentence. We treat them as multilabel

datasets. This includes the labels, for PDTB: Temporal, Asynchronous, Precedence,

Synchrony, Succession. For RST, the final set of labels that we use: Elaboration, Joint,

Topic Change, Attribution, Contrast, Explanation, Background, Evaluation, Summary,

Cause, Topic-Comment, Temporal.

Knowledge Base Population (KBP) 2014/2015 Some of Van Dĳk’s discourse elements differ

based on the presence or absence of an event. For example, the elements Previous Event

(C2) and Current Context (C1) both describe the context before a main event, but the

former describes events while the latter describes general circumstances. We hypothesize

that a dataset identifying event occurrence can help our model differentiate these elements.

We collect an additional non-discourse dataset, the KBP 2014/2015 Event Nugget dataset,

which annotates trigger words for events by type: Actual Event, Generic Event, Event

Mention, and Other. We preserve this annotation at the sentence level, similar to the

PDTB and RST transformations in Section 4.5.2 and downsample documents similarly.

All-The-News (U) For semi-supervised data-ablation experiments, described in Section

4.5.3.3, we sample 6,000 documents from an unlabeled news dataset.55 We downsample in

the manner described above for PDTB and RST.
54Specifically, if pm(n) and pa(n) are the likelihood of a document d with n sentences in the main and

auxiliary datasets respectively, we sample with weight wd = pm(n)/pa(n) [569]. pm(n) and pa(n) were
determined empirically by Nn/Ntotal.

55kaggle.com/snapcrack/all-the-news. Dataset originally collected from archive.org. We filter to
articles from nytimes.com and reuters.com.
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M1 M2 C2 C1 D1 D2 D3 D4 E F1Mac F1Mic

Support 460 77 1149 284 406 174 1224 540 396 4710 4710

Pretrained encoders
ELMo 50.6 27.0 58.9 35.2 63.4 50.3 70.5 64.3 94.6 57.21 62.85
RoBERTa 52.1 9.4 65.1 27.7 68.1 51.6 72.4 65.4 96.0 56.43 64.97
+Frozen 51.2 29.3 64.3 29.8 72.2 65.8 73.7 67.1 96.5 61.08 66.54
+EmbAug 54.1 28.0 64.7 35.9 71.8 66.3 72.9 65.9 96.3 61.76 66.92

Data augmentation
TDA 8.5 5.2 57.1 29.8 61.1 44.3 66.1 58.2 16.4 56.53 59.22
UDA 49.4 0.0 65.0 28.4 56.0 0.0 70.8 69.8 96.2 48.39 62.72
+TSA 51.9 34.2 63.6 33.1 70.7 66.9 72.5 66.7 96.3 61.77 66.29

Multitask
MT-Mac 54.9 35.5 63.8 35.9 73.7 70.7 73.7 66.3 96.7 63.46 67.51
MT-Mic 55.4 25.0 67.1 32.8 72.5 68.9 73.6 65.8 96.0 61.89 67.70

Human agreement
Hum-Pre 58.8 36.1 28.3 10.5 75.0 40.0 48.6 22.2 100.0 46.18 46.76
Hum-Post 68.7 75.0 70.3 33.3 81.2 79.2 83.0 79.7 100.0 73.69 77.63

Table 4.14: F1-scores of individual class labels in VD2 and Macro-averaged F1-score (Mac.)
and Micro F1-score (Mic.). ELMo is the baseline used in [463]. RoBERTa+Frozen+EmbAug
is our subsequent baseline. TDA refers to Training Data Augmentation. UDA is Unsuper-
vised Data Augmentation (+TSA is for “Fine-Tuned UDA with TSA”, described in Section
4.5.3.3). MT stands for multitask: MT-Mac is a trial with α chosen to maximize Macro
F1-score while MT-Mic is a trial with α chosen to maximize Micro F1-score. Human is our
agreement with [463]: Hum-Pre shows human agreement after reading VD2’s annotation
guidelines, conferencing and not observing labels. Hum-Post is after observing VD2 labels.

4.5.3 Experiments and Results

In this section, we briefly discuss experiments using VD2 as a single classification task.

Then, we discuss the experiments using VD2 in a multitask setting. Finally, we discuss our

experiments with data augmentation as ablations. We give a more detailed analysis of

single-task experiments in [145], focusing here on multi-task experiments.
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Figure 4.17: Optimal loss coefficients (α) across
tasks shown for: (a) trials, (First two blue bars;
MT-Micro and MT-Macro trials) (b) pairwise
multitask tasks (other blue bars), (c) baseline
(red bar) (d) data ablation (yellow bar; UDA
and TDA). Tasks are green in strength, α value.
When U is used, it is used with UDA head.
Hashed VD2, for TDA, is data-augmented (Sec-
tion 4.5.3.3).
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Figure 4.18: Comparison of class-level
accuracy vs. label # for 3 models: MT-
Micro, TDA (which underperforms base-
line for lower-represented labels like
M2, C1), and MT-Macro (which over-
performs baseline for lower represented
labels M1, M2, D1, D2). Split y-axis
shown for clarity, due to TDA outliers.

4.5.3.1 Single Task Experiments

We observe, perhaps unsurprisingly, a 2-point F1-score improvement by using RoBERTa

as a contextualized embedding layer rather than [463]’s baseline, ELMo [570] (Roberta

in Table 4.14). We observe an additional 1.5 F1 score improvement by freezing layers in

RoBERTa (+Frozen in Table 4.14). We find that freezing layers closer to the input results

in greater improvement, replicating [571]. Finally, we observe a .5 F1 improvement by

incorporating document, headline, and sinusoidal information (+EmbAug in Table 4.14).56

4.5.3.2 Multi-Task Experiments

As shown in Table 4.14, multitask achieves better results than any single-task experiment.

We conduct our multitask experiment by performing a grid-search over loss-weighting,

ασ (defined in Equation 4.14). We select top-performing α for Micro F1-score as well as

Macro F1-score based on a validation split, and report results on a test split.57 As can be

56The .5 F1 improvement is observed across different sentence embeddings variations. See [145].
57Train, test and validation splits are specified by [463].
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Dataset F1Micro F1Macro Dataset F1Micro F1Macro

Main .83 1.15 ARG .05 .83
RST .50 .73 PDTB -.69 1.41
VD3 .49 .53 U 1.14 .68
VD1 .21 .61 KBP 2.17 2.94

β0 66.26 61.13

Table 4.15: We run LinReg (LR) on the α weights from multitask trials to predict Micro and
Macro F1-scores (i.e., LR(α) = Mic. F1, Mac. F1). LR coefficients (β) for each dataset show
the effects of each dataset on the scores.

seen in Figure 4.17, the weighting achieving the top Micro F1-score includes datasets VD2,

ARG, RST and PDTB-t, while the weighting achieving the top Macro F1-score includes

datasets VD2, ARG, VD3, and RST. To understand the effect of each dataset individually,

we run linear regression on the α and F1-scores found in our grid search.58 The regression

coefficients, β, displayed in Table 4.15, approximate the effect each dataset has. We conduct

over 600 trials in our grid search.

4.5.3.3 Data Ablation Experiments

To test our hypothesis that labeled information in the multitask setup helps us achieve

higher accuracy, we perform the following ablation: we test using additional data that

does not contain new label information. We test two methods of data augmentation:

Training Data Augmentation (TDA) and Unsupervised Data Augmentation (UDA). TDA

enhances supervised learning [572] by increasing the size of the training dataset through

data augmentations on the training data; it exploits the smoothness assumption in

semi-supervised learning to help our model be more robust to local data perturbations

[573]. For each datapoint (xi, yi) in our primary dataset, we generate k = 10 noisy

samples (xi1, yi), ..., (xik, yi). We use a sampling-based backtranslation function to generate

58I.e. y = βX , where X = α, the loss-weighting scheme for each trial, and y = F1-score.
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augmentations for TDA and UDA. [574].59 UDA is a form of semisupervised learning

that propagates signal from labeled to unlabeled datapoints, making use of the manifold

assumption in semi-supervised learning [577, 573]. UDA seeks to promote consistency

between model predictions on unlabeled datapoints pθ(xi) and their augmentations

{pθ(x̂i)}kj=1 by minimizing their KL-divergence.60 Both techniques were chosen as they

have been shown to boost performance of low-resource NLP classifiers above other semi-

supervised methods [572, 578, 576, 577, 579]. Because both techniques introduce more

data without introducing more labels, they address the question: did multitask learning

improve accuracy only by introducing more data?

As shown in Table 4.14 and Figure 4.17, TDA and UDA fail to improve performance

above single-task experiments (RoBERTa+EmbAug). To interrogate further, we explored

approaches introduced by [577] and [579] to improve convergence of UDA. Specifically,

we use a confidence threshold, r, to mask out uncertain unlabeled data; Training Signal

Annealing (TSA), to mask out uncertain labeled data; suppression coefficient β, to decrease

unsupervised loss contributions for low-support classes; and other methods.61 We test a

range of values for each of these hyperparameters. In particular, we find that TSA with

a Linear schedule has a dramatic effect on accuracy, nearly rescuing the performance of

UDA. We show UDA with and without TSA (Figure 4.18, Table 4.14) to demonstrate, yet

we are unable to achieve a setting whereby UDA or TDA beats multitask. Additionally, we

add UDA as an unsupervised head in our multitask setup, similar to [558] introducing

language modeling as an unsupervised head. We find only one setting where it contributes

to our multitask accuracy (MT-Macro in Figure 4.17 and Table 4.15).

59To perform backtranslation, we use Fairseq’s English to German and English to Russian models [575].
Inspired by [576], we generate backtranslations using random sampling with a tunable temperature parameter
instead of beam search, to ensure diversity in augmented sentences.

60KL-divergence is minimized via consistency loss: Lcon = Ek[D(pθ(xi)||pθ(x̂i,k))]
61See [145] for a detailed discussion on these approaches and our reported explorations. The top-performing

hyperparameters we found were: r = .8, TSA = Linear, β = 0, k = 5, p = 8, αUDA = .8, τ = .8,; [577] do
not share their explorations; we find that the choice of p (the number of unlabeled data) and k (the number of
augmentations per datum) have significant impact on performance.
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Figure 4.20: Change in Confusion
between MT-Macro and Baseline
(RoBERTa+EmbAug). Except for His-
torical Event, all classes show an
improvement. Classes with Event-
Based and Temporal error improve-
ment highlighted (see Section 4.5.4 for
discussion on confusion categories.)

4.5.4 Discussion

As shown in Figure 4.18, a multitask approach significantly increases performance for

underrepresented classes while not hurting performance for others. This is in contrast

to pure data augmentation approaches, like UDA or TDA. Improving performance in

low-support classes improves overall Macro F1, as expected, and Micro F1 (Table 4.14).

Under the emulation view, auxiliary datasets provide distinctCσ(y | a) that make certain

latent actions amore or less observable. Temporal relations in PDTB-t increase observability

of actions that differ by temporal orientation (e.g., C2 vs. M2), while argumentation tags

increase observability of analytic actions (e.g., D3, D4). Thus, gains on underrepresented

ND labels are expected when auxiliary Cσ reduce ambiguity about a in precisely those

regions. We pause to comment on the differences in task weightings observed in Figure

4.17 for MT-Micro and MT-Macro. For example, ARG is one of the most important datasets

for MT-Micro, but ignored in MT-Macro. In class imbalanced settings, Micro F1-score

is weighted more towards high-support classes while Macro F1-score favors each class

equally. Because different auxiliary tasks boost performance for different classes, it is
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reasonable to assume that the same α will lead to different Macro F1 and Micro F1 scores62

One future direction is to identify criteria for including promising discourse tasks in

a multitask framework. [580] performed such an analysis for multitask setups including

POS-tagging and Keyphrase detection and the present work demonstrates the impact such

criteria could have in aiding discourse tagging. One criteria for inclusion might be based

on the label correlations between the main discourse task and a candidate task. However,

obtaining correlations would require training a multitask model; at that point, directly

calculating the accuracy boost would be trivial. Identifying discourse-relevant features in

the input data, x, as [580] did in their work, might be more fruitful. A competing explanation

to our hypothesis that multitask improves performance through label correlations is that

additional datasets simply expose the model to more of the data-input space, x. Both UDA

and TDA serve as ablation studies for this. [579] show that, for class-imbalanced problems,

regions of the data manifold that contain the underrepresented classes generalize poorly

when data augmentation is used. Indeed, we show in Figure 4.19 that TDA and UDA

over-predict overrepresented classes, perhaps showing that the algorithms misjudge the

extent of under-represented classes on the data manifold. One approach to improving

semi-supervision would be to consider a more sophisticated annealing algorithm. As

discussed in Section 4.5.3.3, TSA nearly rescued UDA’s performance for all labels. Another

would be to generate more augmentations for underrepresented classes [581]; on the

training data for TDA [582] or using a model to identify promising unlabeled points for

UDA. Upsampling underrepresented labels in sequences, which our data are, presents a

challenge because we can only sample the entire sequence (i.e. the document). Thus, if

we try to upsample individual underrepresented classes (i.e. sentences), we will also be

upsampling overrepresented classes in the sequence.

As a final piece of analysis on our multitask setup, we show the reduction of confusion

between MT-Macro and Baseline in Figure 4.20.63 We identify reductions in two main

62For more information, see [145].
63For a more extended analysis, see [145]
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classes of confusion: Temporal confusion, or confusion between temporal ordering of

discourse elements (i.e. Previous Event and Consequence); and Event-based confusion,

or confusion between tags semantically similar except for the presence of an event (i.e.

Current Context and Previous Event). We hypothesize the reduction is due to the addition

of temporal information in PDTB-t and event information in RST.

We close our discussion with an analysis of VD2’s task difficulty. We ask expert

annotators to relabel VD2data. Our annotators read [463]’s annotation guidelines and

labeled a few trial examples. Then they sampled and annotated 30 documents from

VD2without observing VD2’s labels. Annotations in this Blind pass were significantly

worse than predictions made by our best model (Table 4.14). Then, our annotators observed

VD2’s labels on the 30 articles, discussed, and changed where necessary. Surprisingly, even

in this Post-Reconciliation pass, our annotators rarely scored more than 80% F1-score.

Thus, Van Dĳk labeling task might face an inherent level of legitimate disagreement,

which MT-Macro seems to be approaching. However, there are two classes, M1 and M2,

where MT-Macro underperformed even the Blind annotation. For these classes, at least,

we expect that there is further room for modeling improvement through: (1) annotating

more data, (2) incorporating more auxiliary tasks in the multitask setup, or (3) learning

from unlabeled data, by fine-tuning RoBERTa [583], using an adapter-based method [584]

or another semi-supervised algorithm (one candidate besides UDA is [578]).

Summary We framed discourse tagging as schema–conditioned inverse modeling, learning

qθ(a | x, σ) over latent discourse actions a ∈ A, with observable labels y ∈ Lσ arising

via a schema–specific emission Cσ(y | a). A shared encoder with schema–specific heads,

trained across multiple schemas, yields a state-of-the-art improvement of +4.9 Micro F1 on

NewsDiscourse (62.8%→ 67.7%) and higher Macro F1 (e.g., 63.46 for MT–Macro), with the

largest gains on underrepresented labels. We show in exhaustive experiments in [145] that

data-only augmentations (TDA, UDA) fail to surpass a strong single-task baseline and bias

predictions toward majority labels. Multitask gains, on the other hand, are explained by
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label-correlated signal: auxiliary schemas provide complementary observation models Cσ

that make rare/ambiguous actions more observable, improving estimation of qθ(a | x, σmain)

in low-density regions of the state manifold. Crucially, the fact that cross-schema training

helps while data-only augmentation does not is evidence for an underlying semantic overlap across

observation channels: distinct Cσ appear to be different lenses on a shared latent action space A, so

small schema variations do not erase the core semantics being emulated. We show an additional

benefit that our approach can reconcile datasets with slightly different schema, allowing

NLP researchers not to “waste” valuable annotations.

Overall, in this Section, we treat schemas as observational lenses. Treating each dataset

as an observation model Cσ clarifies why combining them helps: PDTB–t contributes

temporal orientation; RST contributes relational structure; Argumentation contributes

analytic/explanatory cues—together reducing ambiguity over a. The observed improvements

thus support our original hypothesis that these lenses share substantial semantic content over a.

Multitask improves minority classes without hurting majority ones, unlike TDA/UDA,

which overpredict frequent labels; TSA can partly stabilize UDA but does not match

multitask. The view is not uniform, though — which auxiliaries help depends on the

metric; we observe different optimal weightings for Micro vs. Macro, consistent with their

sensitivity to class frequency; linear-regression coefficients on ασ align with the qualitative

roles above. Confusions shrink along temporal and event-based axes (e.g., C2 vs. M2, C1

vs. C2), matching the added observability from PDTB–t and event signals. Finally, post-

reconciliation human agreement remains well below 100%, suggesting inherent ambiguity;

nonetheless, MT–Macro approaches human accuracy on many labels while still trailing on

M1/M2, indicating room for better temporal/event modeling or expanded A.
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...in counties having a metropolitan form of
government and in counties having a popula-
tion of not less than three hundred thirty-five
thousand (335,000) nor more than three hun-
dred thirty-six thousand (336,000), according
to the 1990 federal census or any subsequent
federal census, the magistrate or magistrates
shall be selected and appointed by and serve
at the pleasure of the trial court judge...

Figure 4.21: Paragraph from a sample law,
Tennessee § 36-5-402, referencing a bureau-
cratic process impacted by population counts
determined by the upcoming federal census.
The colored blocks represent the following
legal discourse elements from our schema:
Probe, Test , Subject, Consequence, Object
(see Section 4.6.1). We train LLMs to identify
these spans and build a web application to
aggregate these span tags across state-level
laws.

Having both introduced new methodolo-

gies for transition-modeling and offered an-

other lens to justify the use of discourse

schemas, we now close with a lighter,

“bonus” section, showing how emulation

can be utilized for creative, interpretive

tasks outside of journalism, specifically com-

putational law. AI practitioners have long

explored how to use automation to interpret

the law64 [585]. Recent advances in NLP

and information retrieval have already en-

abled practical applications [586], such as

legal question answering bots 65, contract

generation66, and automatic motion-filing

[587]. The legal reasoning capabilities of

large language models (LLMs) are promising [588, 589] – GPT4 has been demonstrated to

pass the bar exam.

However, fundamental challenges remain. As noted by [590], GPT3 models fail when

confronted with simple, yet ambiguous conditions (or “tests”) present in legal rules [591],

a challenge documented in other models as well [592, 593]. Additionally, the majority

of legal study has been focused a few specific domains, like contracts [594, 595], privacy

policy [596, 597], and corporate law [598], and the kinds of tasks heretofore studied have

64Specifically: legal codes, court opinions and regulations.
65https://www.chatbotsecommerce.com/nrf-launches-parker-first-australian-privacy-law-

chatbot/
66As well as other documents: documents – i.e. laws, court opinions and regulations https://legal.thom

sonreuters.com.au/products/contract-express/, https://turbotax.intuit.com/
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Figure 4.22: A sample span-and-relation discourse tree generated from a paragraph of
legal text. Above, the highlighted text shows the original law text with discourse-spans
annotated. Below, relations are drawn between discourse blocks, shown with double-black
curved lines and categorically annotated. Note that the Subject responsible for carrying
out the Consequence is passively implied.

been highly domain specific67. Benchmarks like [588] are dominated by these use-cases,

limiting our ability to get a general assessment of a model’s abilities. It also limits our

confidence about models’ reasoning in understudied legal domains which are important

to policy makers, journalists and academics, like state-level administrative law.

We see the need to introduce a unified mode of study that can quickly incorporate new

areas and applications of law. Discourse analyses, or the study of functional role of text and

its relations within in a document [556, 555], has been successfully applied to areas like

argumentation [599], dialogue [600] and journalism [446, 145]. In journalism, for instance,

we used discourse schemata in Sections 3.4, 3.5, 4.2 and 4.3 to describe textual relations

and drive emulation learning for various tasks.

In this work, we develop a legal discourse schema for characterizing a legal text, which

we apply to state-level legal texts. At the core, our schema seeks to answer the following

key questions: (1) When does a law apply? (2) What are its consequences? (3) Who is

affected? We show that large language models struggle to model this schema, yet it is

67An example of a domain-specific task: “Classify if the clause limits the ability of a party to transfer the license
being granted to a third party” from [595].
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useful for human practitioners. In Section 4.1, we argued that discourse relations map to

writer actions. Here, our discourse schema corresponds to a sequence of writer actions

τ = (a1, . . . , aT ) that produced the observed legislative text g and that, we show, give us

deeper insights into to intended meaning of this text. Our inverse function is qθ(τ | g), which

seeks to recover these actions from the observed text.

This Section unfolds as follows. We outline our discourse schema and modeling in

Section 4.6.1. Next, we discuss our dataset collection process, including the web-scrapers

we release for gathering public-domain U.S. state law text (Section 4.6.2.1). In Section 4.6.2.2

we describe our lightweight and modular span and relation annotation interface which we

used to collect data. Next, in Section 4.6.5, we describe our web-app, where we surface our

model’s output to journalists and engage volunteers to improve our annotations. Finally,

we discuss an ongoing use-case to illustrate how one might use our app in Section 4.6.5.1.

4.6.1 A Legal Discourse Schema

A legal rule is a hypothetical imperative [601], or a conditional consequence. Reasoning about

these rules requires practitioners to understand how and whether conditions of the law

are met; what the consequences are [590]; and who is affected by these consequences.

As shown in Figure 4.22, modeling the different components of a legal doctrine as

discourse units and how they interact as relations can be an effective way of discern meaning

[556, 555]. Identifying these parts poses a basic test of a model’s legal reasoning and can

also lead to practical use-cases (as [446] showed in the journalism domain). We introduce

the key parts in our schema, starting with span annotations and then relations.

4.6.1.1 Span-Level Schema

A span-level discourse element corresponds to a span action aspan(si, zi) that specifies a

micro-intention of the writer: who they intend to affect and what the effect will be. In our

generative story of legal texts, the writer (1) first selects a sequence of discourse actions
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Edge Case Type Example

Passive Subject and Object: Taxes shall be collected at the beginning
of every month.

Subject-Consequence relation without an Ob-
ject:

The trial court judge shall begin session
at or before 9am.

Subject-Consequence-Object relation > 1-hop The magistrate shall designate to the
county clerk, who shall adjudicate
among taxpayers

Table 4.16: Edge Cases and Extensions: Our discourse schema flexibly handles differ-
ent variations of legal expressions. Shown here are variations of the Subject-Object-
Consequence relation. In the top variation, the Subject and Object (i.e. “Tax-collector” and
“Tax-payer”) are not actively expressed. In the middle relation, no Object is entailed. In
the bottom relation, a multi-hop relational chain is formed.

τ = (a1, . . . , aT ) (for example, “create Test on Probe”, “link Subject to Consequence”).

Multi-hop Subject→Consequence→Object chains arise by composing actions in τ . (2)

These actions are realized into surface form as the observed paragraph g. (3) Given g,

we recover τ̂ using the inverse function qθ(τ | g). Supervision uses gold actions a⋆ for

a subset of spans and relations. The eight discourse elements we identify are Subject,

Object, Probe, Consequence, Test , Exception, Definition and Class. The first three are

entities (noun phrases); the others are predicates (verb or prepositional phrases). Subject,

Consequence and Object capture first-degree interactions between entities, inspired by

[602]. We describe each aspan in turn.

• A Subject is an entity that gains powers or restrictions under a law. (e.g. "The

trial court judge shall adjudicate property disputes between claimants.") Subjects aren’t

always explicit, and can be expressed passively (see Table 4.16 for examples of

edge-cases).

• The Consequence is the specific power or restriction conferred by the law. Conse-

quences nearly always are attributed to the Subject , either passively or explicitly.

(e.g. "The trial court judge shall adjudicate property disputes between claimants.")
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• An Object is an entity (noun phrase) affected by the Subject , under a law. Typically,

when the Subject gains powers, the Object usually faces more restrictions; if the

Subject faces restrictions, the Object usually faces fewer restrictions. (e.g. “The trial

court judge shall adjudicate property disputes between claimants.”) Like Subjects, Objects

are not always present in the text, or might be expressed passively.

Often, the Subject-Consequence-Object involves a longer chain than a 1-hop relationship

(for an example, see Table 4.16)68. In these cases, an entity is both an Object and a Subject

. We label this entity as an Object to prioritize the first Consequence . The next three

elements in our schema, Test , Probe and Exception , indicate when laws apply.

• A Test is an explicit condition applied to an entity (i.e. an Object, Subject or Probe

) that determines when a Subject -Consequence -Object relation holds. (e.g. “In

counties with a population above 10,000, the trial court judge shall adjudicate... unless

claimants settle.”

• A Probe is an entity to which a Test is applied to that is not a Subject or an Object. If

the Test is applied to a Subject or an Object, there may not be a need for a Probe .

“In counties with a population above 10,000, the trial court judge shall adjudicate... unless

claimants settle.”

• An Exception is a corollary to a Test ; it specifies when a law does NOT apply. An

Exception usually modifies a Test “In counties with a population above 10,000, the trial

court judge shall adjudicate... unless claimants settle.”.

Finally, the remaining two classes in our schema, Definition and Class, serve to more

fully characterize the entities mentioned in legal text. These terms have already been

well-described in the literature [603, 590] and incorporated into tasks [588]. We give

definitions in and examples of all span-level discourse types in [129].

68Example of a Subject-Consequence-Object that is greater than 1-hop: “The magistrate shall designate to
the county clerk, who shall adjudicate among taxpayers”.
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4.6.1.2 Relational Schema

Links between spans arise from a more macro-level action, arel. Here, the writer intends

to specify how these spans relate and creates a greater meaning in the text. Cross-type

(e.g., Test→Probe ) and same-type (e.g., Test ∧Test ) links are different families of arel but

share the same inverse predictor qrel
θ (arel | g). We define 21 relational categories during

our annotation process. There are two categories of relations. (1) The first category occurs

between discourse units of different types. The type of these relations is usually singular

based on the type of the discourse units (e.g. a Test -Probe relation means that the Test

is being applied to the Probe entity), so we do not enumerate them here (we give full

definitions in [129]). (2) The second category applies between discourse units of the same

type. These are typically simple grammatical or logical relations. For instance, sameEntity

indicates that two entities are instances of the same class of entity or the same instance of

an entity. Or, And refers to how two predicate interact (e.g. if Test 1 OR Test 2 is passed...).

4.6.1.3 Parsing Level

Our framework can be conceptualized recursively, with spans being further parsed, tree-like

[604]. For example, a Subject “trial court judge” can be also interpreted as “trial court judge”.

We define the parse-level in relation to the interpretation of the law. For instance, if “trial

court judges” are being compared with other judges, e.g. “county judges”, we need the “trial

court judge” and “county judge” parses, which create conditions for comparison.

4.6.2 Dataset Creation

In this section, we describe how we operationalized the schema discussed in Section 4.6.1.

We scrape a dataset of all state-level laws from 52 U.S. states and territories, which we

discuss in Section 4.6.2.1. We then sample a set of paragraphs to annotate. We build

an annotation framework, described in Section 4.6.2.2, and enlist four annotators, who
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collectively annotate 602 law paragraphs.

4.6.2.1 Dataset Construction

Our full legal dataset comprises the more than 100,000 active state-level laws in the United

States. We compile this dataset by building a scraper for a public-domain law website

called Justia.69 We then manually audit the output collected by Justia by comparing to state

websites and find 19 states where either Justia is incomplete, not updated, or unparsable.70

We build individual state-level parsers for these states. State law is public domain,71 yet it

is often inaccessible for bulk downloads and web scraping. For instance, many websites

license LexisNexis, a for-profit company, as the official provider for their state codes72.

Although these websites are publicly accessible, they employ a range of mechanisms (e.g.

timeouts, dynamically-generated URLs, cookie-based access) that make them difficult to

scrape.73 To circumvent these, our scrapers are robust and mimic human web-browsing

behavior. We develop a generalized scraper for LexisNexis Public Access websites using

scrapy74 and selenium-webdriver75. In order to scrape Justia, we launch three Google

Compute Engine (GCE) instances for a total of 60 compute hours76.

69https://www.justia.com/
70Some of the laws provided by Justia, such as those for Colorado, contain data in PDF files (see

https://law.justia.com/codes/colorado/2019/), which, due to formatting, have a high OCR error rate, so
in these cases we we extract directly in these cases.

71https://fairuse.stanford.edu/overview/public-domain/welcome/
72Ex. Colorado, Georgia and Tennessee: http://www.lexisnexis.com/hottopics/colorado, http://www.

lexisnexis.com/hottopics/gacode, http://www.lexisnexis.com/hottopics/tncode
73The practical effect of mechanisms to block bulk downloads is the hindrance of law corpora collection for

journalistic or academic study.
74https://scrapy.org/
75https://www.selenium.dev/.
76We will release our code for scraping with Docker images created to perform these scrapes. Given the

difficulty in creating this dataset, we believe these routines constitute a considerable resource for academic
inquiries into state-level law.
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% annots % of docs # / doc

Test 28% 91% 2.4
Subject 20% 95% 1.7
Consequence 19% 83% 1.8
Object 15% 69% 1.7
Probe 9% 46% 1.5
Class 6% 34% 1.5
Definition 2% 11% 1.6
Exception 1% 6% 1.1

Table 4.17: The prevalence of different discourse units across our annotated dataset. The left
column shows the percentage of units across all annotations. Center shows the percentage
of documents in our corpus that have at least one discourse unit. Right shows the average
number of units per document, when present.

4.6.2.2 Annotation

We recruited 4 annotators, including one former journalist and 2 undergraduate re-

searchers77. We trained all of the annotators for multiple rounds, until they were achieving

above an 80% accuracy in both span and relation identification tasks, based on a gold-label

set that we constructed. After reaching this agreement level, we begin accepting completed

tasks from annotators. We had multiple rounds of conferencing throughout the period of

annotation where we discussed edge-cases, and maintained a Slack channel throughout the

annotation process that was continually monitored. Together, the annotators annotated 602

laws, with a 10% overlap, from which we calculated a κ = .8 We found that our annotators

could learn to identify different span and relation levels in most contexts quite easily.

However, most of the error and ambiguity of the annotation process derived from when

to split spans into sub-spans (e.g. the Test in: “clerks of the superior court of the county can

be split further: “clerks of the superior court of the county). The decision to do so usually

depends on many factors, e.g. if entities will be coreferenced elsewhere. Despite rounds of

77We compensated the undergraduate researchers fairly at a rate of $20 per hour through AMT, according
to University policy
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Relation %

ENTITY↔ PREDICATE 61
ENTITY↔ ENTITY 20
PREDICATE↔ PREDICATE 19

Table 4.18: Types of relations common in our corpus. ENTITY includes: Subject , Object
and Probe . PREDICATE includes all others.

Figure 4.23: The conditional likelihood of a target discourse class, given a source discourse
class. The color scale is p(t|s) where s is the source node and t is the target node.

training, annotators still sometimes struggled; our directive in these circumstances was to

parse to the lowest-level. See discussion in Section 4.6.1.3.

We built a Javascript-based framework to handle span and relation tagging and (1)

serve as a standalone web-app for annotators (2) compile to Amazon Mechanical Turk

(AMT) tasks78 (3) integrate into a web-site built for journalists using our work (described

in Section 4.6.5). Although many NLP-focused annotation tools exist79 we found that none

were flexible enough to be integrated easily into larger websites or automatically generate

AMT tasks.80 We plan to distribute our interface as a stand-alone Javascript package. For

more details about the annotation interface, see [129].

78https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_HTMLQuestionArticl
e.html.

79There were 87 frameworks as of [605]’s count, including BRAT [606], YEDDA [607] and WebAnnon [608]
80We will release the annotation code as part of this framework
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4.6.2.3 Dataset Statistics

Corpus Description The length of the legal paragraphs we annotate averages 490 characters.

The types of content that we focused on in our sample included topics on Government,

education and environment. Certain states in our sample emphasized different topics. For

example, California has a higher proportion of laws aimed at Poverty and Development

compared with Tennessee, which has a higher proportion of laws focused on Administration

(see [129] for more information and visualizations).

Discourse-level Analysis Discourse unit-level statistics vary widely. As can be seen in

Table 4.17, Test and Subject are the most common discourse unit, accounting for 48% of

all span-level annotations. Test occurs in 91% documents. Surprisingly, Exception units

were relatively rare, accounting for only 1% of annotations and occurring in only 6% of

documents. There are many more Test units per document, at 2.4 Test units, than others.

Relation-level Analysis Next, we analyze the nature of the relations between discourse

units. Two discourse spans are much more likely to directly relate if they are closer together

in the law text. 62 characters, on average, separate discourse units with relations, while 195

characters, on average, separate all pairs of discourse units without relations. In Section

4.6.3.3, we describe how we balance our training datasets to remove this adjacency bias.

Figure 4.23 shows the likelihood of transitioning to a target discourse type, given a

source discourse type. We order the x and y axes by the most likely starting points of

discourse elements in a document (Discourse elements that are appear first in the document

to be connected with discourse elements later. See [129] for more information). We see

a strong diagonal bias: all discourse elements are likely to transition to elements of the

same type. We also notice the strong Subject→ Consequence and Consequence→ Object

relation, as well as the Probe→ Test relation. This reinforces insights by [602], [601] and

[590] about the key role of hypothetical imperative language in legal texts (discussed in

Section 4.6.1).
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Subject CONS Object Probe Test EXC Macro Micro

Baselines
ASP [610] 35.7 39.4 26.3 38.9 44.6 33.3 37.7 36.6
PURE [592] 41.5 45.2 25.0 56.1 17.3 36.4 34.3 36.5

GPT3.5
0-shot 34.4 9.7 14.8 13.4 35.4 54.7 27.1 22.7
3-shot 31.7 23.3 20.4 28.2 43.9 46.2 32.3 30.1
5-shot 30.7 24.1 15.9 30.8 49.8 45.2 32.8 30.8
8-shot 29.7 23.4 15.8 33.5 48.4 53.8 34.1 31.0

GPT FT 42.1 49.9 35.9 34.9 53.0 56.0 45.3 44.3

Table 4.19: F1 scores shown for span-identification for our 6 primary discourse elements:
Subject , Consequence , Object, Probe , Test and Exception . Average Precision, Recall and
F1 across all samples are shown. Although fine-tuning improves performance across most
categories, leading to +10-point increases in macro and micro f1-scores, although some,
like Exception , are able to be handled relatively well even in zero-shot settings. F1 scores
are still below human levels of agreement.

On the other hand, we find that several categories of relation are simply unlikely to

ever occur. For instance, Exception is almost never applied to Consequence . We hope in

future work to investigate if these patterns hold up across a wider body of legal text. See

[129] for more details. We Test the implication of this in Section 4.6.3.3.

4.6.3 Legal Entity and Relational Modeling

We frame a new task using the data we collect: Legal Entity and Relational Modeling, or

extracting legally significant spans and their relations. This task is analogous to end-to-end

relation extraction (ERE) [609]. We will first describe two subtasks that traditionally

compose ERE, and how legal discourse can be modeled in this framework, then we will

discuss methods, with a particular focus on how we can use this setup to interrogate the

reasoning capabilities of large language models.
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4.6.3.1 Tasks and Datasets

Span-Level Tagging Given the observed text g and candidate spans S = {s1, . . . , sm}, we

train the span head qθ(a
(span)
si | g, si) to predict span actions. Let a be the set of actions

we supervise — we use a subset of our discourse tags: Subject, Consequence, Object,

Test, Probe and Exception. We focus on these types because they have more within-text

impact compared with Definition and Class, which are primarily about adding context

and helping to reason across texts [611]. For each candidate span si, we predict a type

a
(span)
si ∈ a ∪ {ϵ}, where ϵ is the null class. Supervision uses gold span actions a⋆si . We

optimize the inverse by minimizing the negative log-likelihood

Lspan(θ) = −
∑

asi∈{as1 ,as2 ,...}

log qθ
(
a(span)
si

∣∣g, si) .
In legal reasoning, this subtask can help test a model’s awareness of the function of — or

action generating — each span of text. We filter our task dataset so that each document has

at minimum two of the primary 6 spans, and we additionally remove spans that are at

most one word, as these were the most ambiguous for our annotators to agree on. The

ambiguity, we observed, was primarily due to annotator disagreement around how far

each span should be parsed, discussed in Section 4.6.1.3 and 4.22. This filtering leaves us

with 3,559 spans across 413 documents. We measure classification accuracy using F1 per

class, and we consider a span to be valid if it contains 80% of more of the same words as

the gold-annotated span, after removing stop words and punctuation, and is no longer

than twice in length.

Relation Extraction Let R be a set of pre-defined relation types. For every pair of spans

si, sj ∈ S × S, we seek to predict a relation-type, qθ(a(rel)si,sj |si, sj, g) ∈ {R, ϵ}, where ϵ is the

null class. We consider two versions of this task: detection and classification. Detection asks

whether some rel exists, that is, whether a(rel)
si,sj ̸= ϵ; classification asks which r instantiated
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the action r = a
(rel)
si,sj . This can test how well model identifies which other spans are modified

by a given span. We train the relation head qθ(a(rel)
si,sj | g, si, sj) and evaluate F1 for detection

and for classification. To construct a challenging legal relation classification dataset, we

take a subset of relations R̂ ∈ R that are observed occurring between span pairs of different

span-types. This allows us to focus less on modeling the semantics of each span’s type and

more on the relation between them. We sample negatives, i.e. a(rel)si,sj = ϵ, and notice that

discourse units that are more proximal in the text are more likely to be related, as noted in

Section 4.6.2.3. We find in early trials that our models were overfitting to proximity in text

and not generalizing well to cases where relations are more distant. So, to make the task

more challenging, we sample negative examples that the same distribution of offsets our

labeled examples: in other words, so that the character-offset distribution |pos(si)−pos(sj)|

of negative pairs matches that of positives. We are left with 1,482 datapoints. We measure

model accuracy using F1, focusing on three main groupings: relations between entities

and entities (ENT↔ENT), relations between entities and predicates (ENT↔ PRED) and

relations between predicates and predicates (PRED↔ PRED).

4.6.3.2 Baselines

Relation extraction is a widely studied field, with classical and current work focusing on

modeling each subtask separately [612, 613], as well as end-to-end modeling [614]. As

such, we build upon two recent methods focused on each approach:

PURE [615]: separately models two embedding spaces, one focused on span identification

and the other focused on relation extraction, using masked language modeling [285].

ASP [610]: trains a generative T5 model [616] to create structured predictions.

4.6.3.3 Generative Modeling

Recent work has shown that large language models can also be effective relation predictors

[617]. To test this hypothesis, and to add to a growing body of work focused on bench-

231



4.6 Structural Discourse and Computational Law

marking LLMs for legal tasks [588], we parameterize the inverse function qθ(τ | g) with

GPT-style models and instantiate task-specific heads qθ(a(span)
si | g, si) and qθ(a(rel)

si,sj | g, si, sj)

in order to fine-tune GPT3.5 models81. We format each action prediction as constrained

generation. For span prediction, the model lists all spans for a given discourse type. For

example, for aspan(s) = Subject , we prompt with the question: You are a legal assistant.

I will show you a paragraph of law. Which entities gain powers, restrictions or

responsibilities under this law? <Legal Text>). Additionally, as each law may contain

several discourse elements of the same type, we ask the LLM to generate all elements of a

certain discourse type in mentioned in the given law. For prompts for all relation-types,

filled in with examples, see [129]. For relations, the model answers a yes/no detection

query (detection) or selects a relation type from a closed set (classification). We evaluate

zero-shot, few-shot and fine-tuned settings with identical train/test splits to the baselines.

In other words, for relation detection we generate a “Yes”/“No” indicator, I ∼ llm(s1, s2, g)

if a relation is present between two spans. We construct a prompt where the LLM is given

the legal text and two discourse elements, and ask if they are related. Our prompt is:

“Are span A and B related in Law X?”. For classification we generate the relation-type,

r ∼ llm(s1, s2, g). In other words, our prompt is: “What is the relation between span

A and B in Law X? Answer from the following set: {..., ‘no relation’}.”). We

include ϵ ∈ R so that our experiments with GPT are comparable to the baseline models.

We test two different prompt settings. In the first setting, we simply give the two spans of

text and the law, and ask the LLM to determine if they are related. In the second setting,

we give the LLM the class labels of the discourse units, as well as definitions for what each

label means (w. def, in Table 4.20). See [129] for all relational prompts, with examples. We

test both tasks in zero-shot, few-shot, and fine-tuned settings82 and for each test sample,

we repeatedly query the LLM for 3 trials, randomizing the few-shot examples it receives.

81Specifically, we use GPT3.5-turbo as of October 11, 2023.
82For fine-tuning experiments, we use GPT3.5’s finetuning endpoint, which prompts OpenAI to fine-tunes

GPT3.5 under the hood. This requires us to upload a file of {“prompt”:<>, “completion”} pairs. We generate
this file using the prompting structure described above, with the same train splits used in baseline trials.
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ENT↔ P ENT↔ ENT P↔ P All (Macro) All (Micro)

Det. Cls. Det. Cls. Det. Cls. Det. Cls. Det. Cls.

Baselines
ASP 26.5 14.2 4.5 3.8 4.0 2.2 13.6 6.7 19.5 11.1
PURE 73.9 64.5 15.4 5.3 45.7 38.2 49.5 40.5 63.1 53.9

GPT3.5
0-Shot 54.9 0.0 42.5 27.1 25.2 23.2 40.8 16.8 48.5 7.2
0-S +def 69.4 0.0 54.2 39.5 60.8 48.2 61.5 29.2 65.1 12.8
10-Shot 50.6 55.3 56.8 53.9 40.2 34.2 49.2 47.8 50.5 51.7
10S +def 72.6 60.1 68.5 65.9 65.1 35.2 68.7 53.7 70.8 56.7

GPT-FT 82.6 85.9 76.5 88.7 81.0 65.9 80.0 80.2 81.1 82.9

Table 4.20: Relation Detection and Classification F1 score. We examine scores between
three categories of relations: ENTITIES↔ ENTITIES, ENTITIES↔ PREDICATES, and
PREDICATES↔ PREDICATES. ENTITIES are Subject , Object and Probe , and PREDI-
CATES are all other discourse types. Classification is only run for discourse-type pairs
where more than one relation can exist (see Section 4.6.1).

4.6.4 Results and Discussion

Span-Level Tagging: Table 4.19 shows F1 scores from our span-tagging experiments.

Interestingly, our inverse model qθ(τ | g), via its span head qθ(a(span)
si | g, si) underperforms

trained annotators on identifying span actions even after fine-tuning. Distinguishing entity

roles (Subject, Object, Probe ) is notably harder than predicate types (Test , Consequence,

Exception): GPT was especially challenged by distinguishing between different entities’

roles: Subject , Object and Probe (GPT Fine-tuned scores 35-42 F1 on entities, compared

with 50-59 F1 for predicates. Exception stands out as a particular category where even

0-shot GPT performs well.) Subject and Object roles can be particularly ambiguous,

consistent with the edge-cases in Section 4.6.1, as there are cases when an entity can be

in both a Subject and Object role (we annotated Object, in those cases). Interestingly,

too, the gap between GPT and the baseline models is not as large in this task than it is in

relational modeling. Perhaps our generative setup for this step, p(s|ζ,X), with 6 different
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prompts, allowed GPT to generate the same entity for different categories. We might see

improvements with a post-hoc disambiguation step that predicts ai given (si,g), when

a single span is generated in multiple categories. Our broader finding, though, is that

this remains a challenging task. Although our task dataset, at 400 documents, is small

relative to other language resources, the spans in our schema are syntactically low-level.

The spans divide relatively well into different parts of speech, like noun phrases and

verb phrases; identifying such chunks in text has long been within the capability of even

classical language models [618]. Future work either fine-tuning on other resources, or

using law-specific models, might show improvements in these areas.

Relation Identification and Classification Table 4.20 show F1 scores from relation detection

(Detect) and classification (Class). For relation actions arel, qθ(τ | g), via its relation head

qθ(a
(rel)
si,sj | g, si, sj) approaches (and sometimes matches) human annotators. In other

words relation extraction is a category where fine-tuned GPT performs just as well as our

annotators. We notice, too that in some cases GPT does even better on the classification

task than it does on the identification task (e.g. ENT↔PRED and ENT↔ENT). It’s possible

that the semantics of classification task enforce greater reasoning and justification than

the identification task [219]. The relation identification task also shows a clear different

between the baseline models, which we do not observe in the span-level tagging task. One

explanation for the especially poor performance of ASP [610] is that the jointly learned

model requires the model to make use of more data to fully learn the embedding layers. In

fact, tasks that ASP performs well on, like ACE2005 [612], have 1̃0x more documents and

annotation than our dataset. We show more details in [129].

4.6.5 Practical Use Case: Census 2020

To get feedback on our work from a preliminary group of users, we apply our models to

a domain of state-level law pertinent to journalists. In 2020, the U.S. Census count faced

multiple challenges, notably the Trump administration’s attempt to add the question: “Are
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you a legal citizen?”. Many researchers hypothesized that populations, especially minorities,

might be inaccurately counted [619, 620, 621]. Scant insight existed, especially on the

state-level, into how population counts were being used in law83: the corpus of state-level

laws was too large and varied for journalists to parse. On the other hand, this provided an

interesting case for discourse-based reasoning. Population counts typically get used as a

relatively unambiguous Test . For example, see Figure 4.21, e.g. “In counties with less than

20,000, adjudicators shall..”. Our discourse models help us identify this occurring, and then

we can develop ways to parse out the specific ways population is in Test discourse. We

describe the website we built to facilitate different explorations, and then we describe two

such explorations that we received permission from the journalists collaborating with us

to write about. We will focus on our own contributions in these collaborations.

4.6.5.1 Website Design

We design a website84, shown in Figure 4.24, to enable exploration of our dataset and

modeling output. Users can (1) perform full-text search on all laws in our database, (2)

view the spans our models have extracted, by their discourse role, across laws and (3)

correct or provide new annotations. Users interact with the inferred schema extracted

from (e.g., enumerate Test thresholds; trace Subject→Consequence paths) rather than

raw text alone. For more detail on the website, including flow diagrams, see [129]. The

website’s overall goal is to facilitate both deep explorations and wide explorations.

Going deep: Going “deep” here, essentially, means finding a subset of the laws to study

first, via keyword filtering, and then analyzing the discourse relations within the laws. The

web search functionality85 helps users do this by exploring a specific term or concept in

the law’s plain text or in specific discourse role (e.g. laws affecting Object=“taxpayer”).

After the user finds an interesting subset of laws they wish to study, we use our discourse

83Besides federal budgeting and Congressional representation, which have already been manually
programatized [622, 621].

84To view the website, see: http://www.statecensuslaws.org/
85Powered by ElasticSearch [623]
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Figure 4.24: A flow-based sitemap for our website, statecensuslaws.org, with some details
about the back-end and database setup. The left-column shows Flow 1, where a user can
search and view full-text results. The right-column shows Flow 2, where a user can view
top law-discourse spans. Each flow leads to the annotation framework.

models to answer: who is being affect, under what conditions, and how?

Going wide: Conversely, going “wide” means studying discourse units and relations first,

then analyzing the laws. The website includes a second functionality: allowing users can

view aggregate counts of different discourse units and relations. This helps users notice

patterns among the ways in which discourse was being used. After a user notices a specific

pattern in discourse roles (e.g. Exception units modifying Test units about taxes), then we

can analyze the laws that include, or do not include, these elements. In both flows, visitors

can access our annotation framework, described in Section 4.6.2.2, which helped us gather

more data. We now describe two example articles explored by users of our system.
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Case Study #1: Going Deep (Liquor Store Licenses)

In the first example, journalists hypothesized that the allocation of new liquor licenses

might be population-based. To explore this, they used the search interface; they searched

for the term “alcohol OR liquor OR beverage” in the search interface and discovered that

interface returned 270 laws. Together, we analyzed the breakdown of liquor-related law by

state. We found that the states most likely to base liquor licenses off population counts

were Tennessee, New York and Illinois. They then asked us to extract all Test S from these

laws. We found that mid-size cities would be the most likely to be impacted by a 5% or 10%

undercount in population. The journalists identified key cities and are seeking sources in

these areas.

Figure 4.25: Illustration of a Use-
Case: A heatmap of the state of Ten-
nessee, colored by the number of
laws that would no longer apply in
counties, if a 5% undercount in the
census were to occur. Counties with
Nashville and Knoxville are partic-
ularly effected. Population-related
Test s were identified using our dis-
course framework.

Case Study #2: Going Wide (Slim Population

Thresholds)

In another example, journalists explored the top-

level discourse annotations. They noticed that some

TESTS are based on explicit population thresholds

(ex. Figure 4.21) and that some of these thresholds

were very narrow. We identified all Test s in our

dataset, using our discourse schema. We then com-

piled several keyword filters and regular expressions

extract specific population thresholds.

We found that in Tennessee, in particular, over

40% of all Census-related laws imposed narrow population tests of fewer than 500 people

(e.g. “for counties with no less than 400,000 and no more than 400,500 inhabitants”) and 10%

imposed tests of fewer than 100 people. We show in Figure 4.25 a vivid illustration of

the number of laws that would be affected with a 5% undercount in population, based

on population projections made prior to 2020 [624]. As can be seen, major population

centers like Nashville and Knoxville are the most affected centers. This raised questions:
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what is the purpose of these narrowly targeted laws? Were they trying to target specific

counties without mentioning them by name? The journalists are now investigating further

by tracking down the authors of these laws.

4.6.6 How does a discourse approach fit within the broader computa-

tional law field?

Although the field of AI-driven legal aids is multifaceted and growing [625], free and

open-source frameworks remain few [626, 586, 627]. Our discourse-driven web application,

designed for legal exploratory analysis is one of the few AI-powered, free applications

that exist, and the first to open source tools for legal document collection. For-profit

legal inquiry systems, as mentioned above, are numerous. Bloomberg Law86, Westlaw87,

LexisNexis88 and Wolters Kluwar89 are the four main services for legal research [586],

which provide subscription-based, Google-style searches. CaseText90 and Ravel91 were

two upstart case-text search engines (although both have now been aquired); CaseText

offered crowdsourced annotations and Ravel linked cases together to create visual maps of

important cases [628]. We similarly provide a way of collecting user-annotations, and a

novel way linking together cases, although ours takes a discourse approach rather than an

unsupervised clustering approach.

Various discourse schemas have been developed to understand law texts, including

deontological logic-based schemas [629, 630], and subject matter-specific schemas [631].

Ours is the first discourse-based approach to take steps towards a big-data approach by

setting up a framework for the ingestion of crowdsourced annotations. Finally, outside

of the legal domain, other areas have experienced a growth in academically-oriented

86https://pro.bloomberglaw.com/
87https://www.westlaw.com/
88https://www.lexisnexis.com
89https://www.wolterskluwer.com
90https://casetext.com/
91https://home.ravellaw.com/
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systems for human-in-the-loop inquiry. The COVID-19 pandemic has produced a burst in

NLP-driven corpora-collection [632], demonstrations [633, 634, 635] and workshops [636,

637]. Such concerted effort in the NLP domain to expose resources and build open tools

for subject matter experts is an inspiring guide for how NLP researchers can contribute to

wider inquiries. We hope such efforts expand to other domains as well, forming a common

alliance between academics, civil-minded journalists and other researchers and end-users.

Summary We have sought to take steps towards a semantic understanding of legal texts

[602]. Framed as emulation, our objective is to recover the writer’s discourse actions a

from the observed law g via qθ(a | g). While qθ(a|g) excels at relation actions, role-level

span actions remain challenging and likely benefit from stronger structural constraints

or richer supervision. We show that large language models, while achieving impressive

results in some parts of our task, show surprisingly weak performance compared to human

annotators in others. Language models have an important role to play in interpreting law

and lowering the barrier of access to legal systems. Our task is an important step towards

assessing a sturdy foundation and opening the door to more intensive legal tasks [588]. In

this work, we have presented three open-source components. (1) A web-app exposing a

novel discourse schema and its application to state law referencing U.S. Census counts.

(2) A flexible and modular annotation framework that can be seamlessly embedded into

web-apps to allow visitors to contribute and update annotations. (3) A set of web-scrapers

to help researchers gather public-domain legal text. Our longer-term goal is to collect

feedback and data, and improve our database and machine learning systems. We hope

that such efforts can continue to push legal tech [638] into a more open and accessible

domain, and make it easier to understand the laws governing our society.

239



4.7 Chapter Conclusion

4.7 Chapter Conclusion

In this Chapter, we explored how to realize a set of actions a = a1, a2 . . . into changes in the

state space s = s1, s2 . . . ; sn = g. Specifically, in this section we defined our action space

a to be a representation of human writing-structuring process (e.g. an outline or discourse

structure, where a1 =“Give Background” and a2 =“Write transition”). We introduced

three methods to realize these actions into a structured piece of writing: in Section 4.2, we

introduced a method for sequential control using the inverse model qθ(at|s<t, st, a−t) to steer

an LLM’s generations towards a more desirable structure. We followed this with a similar

approach in Section 4.3 that further enforced not just structural actions but also factual

consistency (represented as s0, the starting state). We introduced in Section 4.4 a third,

more general method, called Classifier Free Guidance (CFG) for NLP, which flexibly extends

beyond discourse structures to any kind of multi-part structure, expressed in a prompt.

After introducing these methods, we further interrogated the “rightness” of latent action

vocabularies A for writing structure in Section 4.5, but took a different approach than in

Section 3.5; here we made the point, actually, the specific choice of vocabulary might not

matter as much as we think and different vocabularies have an underlying correlation that

appears in multitask learning setup. Finally, in Section 4.6, we showed that structural

analysis can be useful outside of transition or policy models; interpreting intent of the writer

can yield novel analytical insights.

Looking forward, for AI to continue to make strides, generative models will need to

maintain coherence over long passages: (a) to reason more effectively, (b) execute longer

workflows, and (c) interact with other agents in agentic systems. Planning and structured

generation, I believe, are important research topics to make progress in these directions.

The state space transition framing that emulation learning sets up is a beneficial framing

for such advancements, as it allows us to study the interplay between human planning

(through inferred actions) and human generation. I see similar approaches as we explored
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in this Chapter being able to model human conversational dialogues, human interaction

systems, game-playing and intent systems and other found data online. I am also excited

for approaches to synthetic data creation, which I believe can give us more insights into

unobserved state space transitions. In this vein, Bayesian Wake-Sleep Cycle, discussed in

Section 2.4, is again a promising candidate for training state-space models — Wake Sleep’s

Generator is a close parallel to the state transition model P (st+1|st, at); the Generator also

takes a structured latent variable input, z, and is tasked with learning a function to project

it into the output (for a recap, please refer back to that section). Looking forward, these

methods and others, I believe, will play an important role in improving methods for

performing state-space transitions, which will continue to play a larger and larger role in AI

systems.
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Chapter 5

State-Space Observability in Emulation

Learning

5.1 News-Edits: A Study in How Information is Updated

Even after the journalist has found, sourced and structured their story, the work is still

not done. Stylistic and factual corrections need to be made; events in the world update

requiring updates. As a practical matter, throughout this chapter, imagine the following

use-case: a breaking news event – i.e. a broadly newsworthy event that updates quickly

– is occurring, and a journalist needs to publish and update (or republish) their article

quickly. Which sources does the journalist need to retrieve in order to craft the first version

of the article? After how many versions, after the basic contours of the event have been

established, is the audience ready for background contextualization? When will the article

Figure 5.1: In the journalism pipeline outlined in Section 1.3, we focus now on the final step
step: editing, or updates that are made to news articles to correct errors, add information,
make stylistic changes, and update facts. Observing edit patterns gives us insights into an
article updates through time, giving us a more temporal granularity into emulation.
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Myanmar coup: Military takes country offline
for second night

Myanmar coup: UN warns Myanmar
junta of ‘severe consequences’

Protesters are defying a clampdown on
opposition

Protesters are defying a clampdown on opposi-
tion

Access to the internet appears to have
been blocked for a second night running by
Myanmar’s new military rulers.

The UN has told Myanmar’s military junta
that “the right of peaceful assembly must fully
be respected”.

Access to the internet in Myanmar
was restored on Tuesday morning after it had
been cut off for a second night.

The coup occurred February 1st.

Source
Added

Event
Updated

Background Added

Figure 5.2: Two versions of a news article D2 — t (left), t+ 1 (right) — covering a coup in
Myanmar. Pink spans denote information that was removed or revised between versions,
while green spans indicate information was added. The transformations shown (i.e. Event
Update, Source Added, Background Added) are examples of actions taken in the article
writing process that we can assign to t. Observing edits allows us to see how the state space
of the article unfolds step by step, and to localize when actions at occur.

stop updating? Simply observing the final state, as we have done in previous chapters, will

not give us any insights – we will not be able to understand what actions were taken when1,

just that they were taken at some point. The news article is seldom a static artifact [639],

but is more a fluid, “liquid” narrative [640, 641, 642] that evolves over time according to

formalized processes [643, 644]. Observe, for instance, two versions of an updating article

(versions t and t+1) shown in Figure 5.2 covering a coup occurring in Myanmar: between t

and t+1, events update (i.e. the internet, which was blocked, is now restored); a source is

added (i.e. a quote from the UN); and background is added (i.e. more information about

the coup). Observing this arc shows us how the framing, details and information provided

change over time – even in the same article. We will now introduce an experimental

setting that will allow us to study these updates in more detail. Article versions of news

articles exist in online archives and are generated each time a news outlet republishes

a story to the same URL [642]. Newsroom cultures have emerged that prioritize speed

and efficiency, especially for “breaking news” articles [645, 646]. This means that many

1Recall, in prior sections, that we usually inferred temporality using heuristics: i.e. which source was a
major source, or which structural discourse element occurred first.

2From the BBC. February 16, 2021. https://www.bbc.com/news/world-asia-56074429
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more article versions are generated for these events throughout the coverage arc, forming

rich histories. These can provide a wealth of information about evolving world states and

actions driving the article forward; while article versions do not capture the exact timing

of updates made between versions, they give us far more observability into an evolving

article than we had previously.

s1,n s2,n s3,n g

a1 a2 a3

... ... ...

Actions
a1,1, a1,2 . . .

Actions
a2,1, a2,2 . . .

Actions
a3,1, a3,2 . . .

Version 1 Version 2 Version 3 Version t

Figure 5.3: Observability into arti-
cle writing given by edit analysis.
In the state space, i refers to ver-
sion number, and j refers to draft
number: s1,1 . . . s1,n1 ; s2,1 . . . s2,n2 ; ....
We assume observability into the fi-
nal draft of each version, s·,n. This
lets us to infer actions at,1, at,2... <
a(t+1),1, a(t+1),2..., between versions
(t, nt) < (t + 1, nt+1). Actions at,i
are any A considered in Chapters
2-4.

News editing and it’s role in emulation learning. We now

begin our final exploration of emulation and creative

works. Until now, the only states we assumed we

could observe were either starting states, s0 (i.e. story

leads, press releases) and/or goal states, g, (i.e. sets of

sources, completed news articles). In some of these

settings, we had synthesized intermediate states, by

say, seeking to predict missing sources. However,

until now we had not observed intermediate states.

As shown in Figure 5.3, we now assume in this

section that we can observe some intermediate states,

s1,n1 , s2,n2 ..., each corresponding to the publication of

an article version (we reserve s·,n for the published draft

of an article version, assuming within-version edits,

Figure 1.7). Between each version (t, n)→ (t+ 1, n),

we assume actions at,1, at,2, . . . occur. These can encompass any kind action we have so far

considered; for instance, in Figure 5.2 we show three actions: at,1 = “Source Added”, at,2 =

“Event Updated” and at,3 =“Background Added’. The analysis of article versions helps us

perform emulation learning because it opens the door to understanding temporal dynamics

of action sequences better. For instance, in Chapter 3 when we studied source-finding, we

either ignored temporal dynamics of when sources that were added to the news article or

we used rough heuristics to impose an ordering. An analysis of article versions, on the
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(a) Imitation: A demonstrator
cracks a nut. Actions a and states
s . . . are visible.

(b) Ghost conditions: A pully
moves the hammer to crack a
nut. Only states, s are visible.

(c) End-state observation: only the
final state, sn = g is visible.

Figure 5.4: Three different
forms of social learning, pic-
tures from [647]

other hand, gives us much more granularity into this tem-

porality: if we filter a1,1, a1,2 . . . a2,1, a2,2 . . . a3,1, a3,2 . . ., ex-

tracted from versions, to actions that map to source inclu-

sion, then we can impose ordering on far more groups of

sources. Thus, our primary interest in this Chapter is not

to establish an explicit goal state g and work backwards to

emulate that, but to use patial state-information to get more

detailed action inferences for goal states g in other contexts

we might wish to study.

The observation of intermediate states has a long history

as a foundational part of the cognitive approach to studying

emulation. In social-learning research, a “ghost condition”

removes the visible agent and shows only an apparatus

producing outcomes (e.g. a door sliding open to reveal a

reward), allowing researchers to dissociate imitation (copy-

ing actions, a1, ...at) from emulation (learning rewards r and

finding goal-states, g) [648]. As shown in Figure 5.4, “ghost

experiments” sit between imitation and end-state observation

in terms of observability. Ghost-condition experiments have

demonstrated that young children can learn from partial

state–sequence information (e.g., seeing only an apparatus

change state) in tasks such as opening “artificial fruit” puzzle boxes and tool-use devices

[649] or where doors slide [203]: these uncovered emulation learning mechanisms from

intermediate state observations [649, 149]3.

3Indeed, even watching a teacher is not clear evidence of imitation: learners do not inherently replicate
every motor movement of the teacher, but often discover new pathways to goals (i.e. emulation).
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Cheat-Sheet: Emulation Learning for Edit-Prediction

We observe sentence-level edits across article versions (i.e. atomic state transitions) and use emulation
learning to infer the latent intentions. We use these to gain more temporality into action sequences.

s st (states) — this is the published article state. Also referred to as Dt. We also refer to st,i as the
ith sentence in version ta (§5.2, §5.3).

a a (actions) — at ∈ A: the latent action/intention between versions that drive the update (e.g.,
update an event, add a quote). We also use sentence-pair actions at,ij to refer to the action
generating sentences (st,i, st+1,j) (§5.2, §5.3).

τ τ (trajectory) — The sequence of state–action steps temporally ordered by article versions, used
to order other actions studied in this work (ghost-conditions) (§5.1).

x x (starting state) — No starting state, x. Aim of section is to analyze inner states.

g g (goal state) — No goal state, g. Aim of section is to analyze inner states.

q qθ
(
at,ij |s′t,i, s′t+1,j , Dt, Dt+1

)
(inverse model) — maps paired sentences i, j in article versions

Dt, Dt+1 to latent edit intentions; where s′ := s ∪ ∅. When st = ∅, it did not exist in that
version. (§5.3, §5.3.1).

π π(a | st,i, Dt) (policy model). — predictor used to forecast which actions are likely to be taken.
Specifically used to trigger cautious behavior (abstention) in QA when factual updates occur and
evidence is likely stale (§5.3.4, §5.3.5).

P Pϕ(st+1 | st, at) (state transition model). — how an intention changes the article, in practice
approximated by “Edit Prediction” tasks. (§5.3, §5.2.3 without a: Pϕ(st+1 | st)).

aIn this introduction, we have referred to st,n as the final draft of version t; we do not carry this notation into the main body.
We reserve s·,i as the ith sentence of version t, not ith draft.

In more creative domains, drafts and revisions are treated as observable traces of

process rather than mere byproducts. Classic cognitive models characterize writing as

cyclical planning–translating–reviewing, not a linear pipeline [133, 650]; empirical work

shows experienced writers revise at conceptual levels (claims, structure) more than at the

surface, making intermediate versions diagnostic of strategy and control [651]. In literary

and creativity studies, genetic criticism systematizes the analysis of manuscripts, notes,

and successive versions to reconstruct the making of a work and explicitly treats drafts as

3Other notation used throughout:
·∆t = ∆(st, st+1): the observable delta between article versions, or the “atomic edit action”. The measurable
state change between versions labeled as Addition, Deletion, Edit, Refactor via sentence alignment—used
both for analysis and as supervision to learn transitions (§5.2.1.2, §5.2.1.3).
· E(·): the emission/observation channel. The alignment/labeling pipeline that emits ∆t from (st, st+1)
without committing to a specific action; provides training signal for qθ and for transition tasks (§5.2.1.3, §5.2).
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production protocols [652]; the geneplore model [653] models process of creation as an

iterative process that proceeds through states. These fields further motivate, in emulation

learning, modeling version histories as observable state–action sequences: given versions

s1,n1 , s2,n2 , . . ., we can infer trajectories τ = (a0,∗, a1,∗, . . .) and learn policies π(τ | s0) with

temporal dynamics aligned to human creative practice.

Chapter 5 Overview

In Chapter 5, State-Space Observability in Emulation Learning, we will study how in-

creased observability into intermediate state spaces s1, s2, ...st can help us learn more

precise sequences of actions a1, ...at. This section will unfold as follows. In Section

5.2, I will introduce the NewsEdits dataset, a large collection of article versions we

collected. I will discuss how we aligned sentences between these versions to better

understand when: information was added was removed; updated; or reprioritized. I

will introduce a task, Edit Prediction, where the goal is to predict observed edits, or st+1

from prior s1...t, a1...t sequences (i.e. the state-transition model p(st+1|st, at) is learnable);

we will show that although machines struggle to do this, human journalists bring

expert intuition. Our focus in this section will primarily be on state-spaces and what

they can tell us. Then, in Section 5.3 I will more concretely codify the action space, A.

We introduce a schema for edit actions, show that we can predict at+1 from st and at,

(i.e. the policy model π∗(at+1|st, at) is learnable). Finally, I will conclude by showing

that learning better policy π̂(at+1|s1...t, a1,...t) and state-transition models p(st+1|st, at)

can help us understand informational staleness and help with model abstention.

Works Discussed:
▷ Spangher et al. (2022)“. NewsEdits: A News Article Revision Dataset and a Novel Document-Level Reasoning Challenge”.

Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language

Technologies.

▷ Spangher et al. (2024)“. NewsEdits 2.0: Learning the Intentions Behind Updating News”. arXiv preprint arXiv:2411.18811.
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5.2 Measuring State-Change: The NewsEdits Dataset

As discussed in Section 5.1, article versions get generated every time a journalist publishes

and republishes an article to the same URL (i.e. in “breaking news” scenarios). This

gives us a unique opportunity to observe news revision-histories: in this Section, I

will introduce the first journalistic edits dataset in the academic literature 4. NewsEdits

is a dataset of 1.2 million articles and 4.6 million versions. In this Section, we will

study NewsEdits from a purely state-space centered view and will seek to prove that state-

space progressions in revisions histories are atomic, informative and predictable 5 (we

will address actions more specifically in Section 5.3). We treat each published version

of an article as an observable state st. The ordered pair (st, st+1) induces observed state

changes that we categorize using edit types. These are not actions; they are observable
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Figure 5.5: Number of versions per article, by
outlet, in the NewsEdits dataset.

state changes emitted by unobserved edito-

rial processes that transform st into st+1. In

Section 5.2.1.1, I discuss how we gathered

our dataset; in Section 5.2.1.2, I discuss how

we identify different state-space changes; and

in Section 5.2.3, I discuss how we predict

edits, or in other words, study transition

regularities in state space changes.

4To be clear, NewsEdits is not the first revision histories dataset. Revision datasets have been gathered
from various natural language domains like Wikipedia [655], Wikihow [656] and student learner essays
[657], and have primarily been studied to explore stylistic changes, grammatical error correction [658] and
argumentation design [659]. However, as explored in the rest of this thesis, we are interested in questions:
What voices and perspectives are needed to complete a narrative? What is the process by which a story is written? and
later, more specific to edits: which facts are uncertain and likely to be changed? Which events are likely to update?
Existing corpora do not suffice. News creation is a normative, professionalized process [105, 24] that involves
performing actions (e.g. source-finding) extrinsic to the act of writing [103]. As such, it is both more intensive
and regular than other more variable, writing-only processes like student essay creation.

5Our predictability experiment follows from the same logic as the compositeness experiment in Section 3.2.3.
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5.2 Measuring State-Change: The NewsEdits Dataset

Corpus # Revisions Language(s) Source Goal

WikEd Error Corpus
[655] 12M changed sentences English Wikipedia Grammatical Error

Correction (GEC)
WikiAtomicEdits
[660] 43M “atomic edits”6 8 languages Wikipedia Language modeling (edits),

semantics/discourse
WiCoPaCo
[661] 70,000 changed sentences French Wikipedia GEC and sentence

paraphrasing
wikiHowToImprove
[662] 2.7M changed sentences English wikiHow Version prediction, article

improvement
NewsEdits
[289] 36.1M changed, 21.7M added, 14.2M

removed sentences; 72M atomic edits
English and
French

22 media
outlets

Language modeling, event
sequencing, journalism

Table 5.1: A comparison of revision-history corpora, their size and composition, and the
intention of their release, to situate NewsEdits.

5.2.1 Dataset Creation

5.2.1.1 Data Collection

We collect a dataset of news article versions. An article is defined by a unique URL, while

a version is one publication (of many) to that same URL. We combine data from two online

sources that monitor news article updates: NewsSniffer7 and Twitter accounts powered

by DiffEngine8. These sources were chosen because, together, they tracked many major

U.S., British and Canadian news outlets [663]. Our corpus consists of article versions

from 22 media outlets over a 15-year timescale (2006-2021), including The New York Times,

Washington Post and Associated Press. Although the median number of updates per article is

2, as shown in Figure 5.5, this varies depending on the outlet. More dataset details in [289].

5.2.1.2 Categories of State-Space Change

Since we are interested in how an entire news article updates between versions, we focus

on sentence-level changes, rather than on token-level rewrites. Identifying that sentences are

added and deleted (vs. updated), can help us study the degree of change an edit introduces

in the article [664, 665, 666]. Again, these labels identify state changes: they describe

7https://www.newssniffer.co.uk/
8https://github.com/DocNow/diffengine
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5.2 Measuring State-Change: The NewsEdits Dataset

st+1 \ st (and relocations within st+1) without committing to the underlying editorial actions.

Thus, we define the following sentence-level state-space changes, shown in Figure 5.6:

Addition, Deletion, Edit and Refactor. Additions introduce novel content; Deletions

remove content; Edits preserve core meaning while revising syntax or updating specific

facts (merges/splits are special cases); see Section 5.2.1.3 for more details. Refactors move

sentences independent of other changes and thus reveal shifts in positional importance.9.

Refactors are important because, based on the inverse pyramid 10 [207] of article structure,

sentences that are higher in an article are more important [667].

5.2.1.3 State-Space Change Extraction

Figure 5.6: Sentence-level
changes – Edit, Addition, Dele-
tion and Refactor – between
two versions of a news article
(merges and splits are a special
cases of Edits).

Our objective is to recover ∆(st, st+1)—the observed state

change between article versions st, st+1. To extract these

state-space changes, we construct a bipartite graph link-

ing sentences in st and st+1 (example graph shown in

Figure 5.6). If an edge exists between a sentence in one

version and a sentence in the other, the sentence is an

Edit (or Unchanged). If no edge exists, the sentence is

an Addition (if the sentence exists in the newer version

only) or Deletion (if it exists in the older version only).

We identify Refactors based on an algorithm we develop:

in short, we identify a minimal set of edges in the graph which causes all observed edge-

crossings. For details on this algorithm, see [289]. Conceptually, this pipeline estimates the

emission E(∆t | st, st+1); it deliberately avoids modeling any latent action space.

In order to construct this bipartite graph, we need a scalable, effective, sentence-

9As an example, in Figure 5.6, the addition of Sentence 2 in versiont+1 shifts Sentences 3, 4, 5 down. These
are not refactors, just incidental moves caused by other changes. However, Sentences 5, 6 in versiont are
shifted upwards in versiont+1, which is movement that is not caused by other changes. We label this as a
Refactor.

10An inverse pyramid narrative structure is when the most crucial information, or purpose of the story, is
presented first [667].
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5.2 Measuring State-Change: The NewsEdits Dataset

Article Version t Article Version t+ 1

The Bundesbank would only refer to an interview
Mr. Weidmann gave to Der Spiegel magazine
last week, in which he said, “I can do my job
best by staying in office.”

The Bundesbank would only refer to an interview
published in Der Spiegel magazine last week,
in which Mr. Weidmann said, “I can carry out
my duty best if I remain in office.”

(a) Edit: When the information conveyed in a sentence is substantially the same across versions,
it should be connected, regardless of how many surface-level edits are made. Our algorithm
successfully matches these sentences.

Article Version t Article Version t+ 1

DALLAS—Ebola patient Thomas Eric Duncan told
his fiancée the day he was diagnosed last week
that he regrets exposing her to the deadly virus
and had he known he was carrying Ebola, he
would have “preferred to stay in Liberia and died
than bring this to you,” a family friend said.

DALLAS—Ebola patient Thomas Eric Duncan told
his fiancée the day he was diagnosed last week
that he regrets exposing her to the deadly virus .
Had he known he was carrying Ebola, he would
have “preferred to stay in Liberia and died than
bring this to you,” a family friend said.

(b) Split: When two sentences in version t + 1 contain substantially the same information as a
sentence in version t, they should be matched (the opposite is a merge).

Article Version t Article Version t+ 1

“The mother, this was the first time seeing her son
since he got to the States.”

“She has not seen him for 12 years, and the first
time she saw him was through a monitor,” said
Lloyd.

“She has not seen him for 12 years, and the first
time she saw him was through a monitor,” said
Lloyd.

“The mother, this was the first time seeing her son
since he got to the States.”

“She wept, and wept, and wept.”

(c) Refactor: When the position of a sentence is moved in a document, we determine heuristically that
the sentence moving up is the refactor, while the sentence moving down is incidental.

Table 5.2: Three challenging examples illustrating how our sentence-matching algo-
rithms help us track information change across sentences, in article versions t and t+ 1.
( red =removed/replaced word, green =inserted/replacement word).

similarity algorithm. There is a wide body of research in assessing sentence-similarity [668,

669, 670, 671]. However, many of these algorithms measure symmetric sentence-similarity.

As shown in Figure 5.6, two sentences from the old version can be merged in the new

version11. The symmetric similarity between these three sentences would be low, leading

us to label the old sentences as Deletions and the new one an Addition, even if they were

11E.g. “ipsum. Lorem”→ “ipsum; and Lorem”. Conversly, one sentence can also be split.
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BERT-Based Subsequence Matching BLEU-Based

Method F1-Score Method F1-Score Method F1-Score

Hungarian
TB-mini 88.5 ngram-1 86.0 BLEU-1 86.7
TB-medium 88.7 ngram-2 88.7 BLEU-2 89.2
RB-base 88.6 ngram-3 88.5 BLEU-3 88.8

Max
TB-mini 89.0 ngram-4 88.2 BLEU-1,2 88.8
TB-medium 89.5 BLEU-1,2,3 89.1
RB-base 89.4

Table 5.3: F1 scores on validation data for matching algorithms. Left-hand group shows
embedding-based methods (TinyBert (TB) and RoBERTa (RB)) with Maximum or Hungarian
matching. Middle group shows ngram methods. Right-hand group shows BLEU for
different ngram weightings (1,2 and 1,2,3 are uniform weightings over unigrams, bigrams
and trigrams).

minimally edited (for concrete examples, see Table 5.2). This violates our tag definitions

(Section 5.2.1.2). So, we need to measure one-way similarity between sentences, allowing

us to label merged and split sentences as Edits. Our algorithm is an asymmetrical version

of the maximum alignment metric described by Kajiwara and Komachi [672]:

Simasym(x, y) =
1

|x|

|x|∑
i=1

max
j
ϕ(xi, yj)

where ϕ(xi, yj) := similarity between words xi in sentence x and yj in sentence y. We test

several word-similarity functions, ϕ. The first uses a simple lexical overlap, whereϕ(xi, yj) =

1 if lemma(xi) = lemma(yj) and 0 otherwise12. The second uses word-embeddings, where

ϕ(xi, yj) = Emb(xi) · Emb(yj), and Emb(xi) is the embedding derived from a pretrained

language model [673, 562]. Each ϕ function assesses word-similarity; the next two methods

use ϕ to assess sentence similarity. Maximum alignment counts the number of word-

matches between two sentences, allowing many-to-many word-matches between sentences.

Hungarian matching [674] is similar, except it only allows one-to-one matches. We compare

12We extend this to non-overlapping ngram matches.
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Total Num. % of Sents.

Edits 26.6 mil. 17.6 %
Additions 10.2 mil. 6.8 %
Deletions 5.4 mil. 3.6 %
Refactors 1.6 mil. 1.1 %

Table 5.4: Summary statistics, after running sentence-matching algorithms, of state-space
changes between article versions t and t+ 1.

these with BLEU variations [675], which have been used previously to assess sentence

similarity [656].

5.2.1.4 Edit Type Extraction Quality

Although our sentence-similarity algorithm is unsupervised, we need to collect ground-

truth data in order to set hyperparameters (i.e. the similarity threshold above which

sentences are considered a match) and evaluate different algorithms. To do this, we

manually identify sentence matches in 280 documents. We asked two expert annotators to

identify matches if sentences are nearly the same, they contain the same information but are

stylistically different, or if they have substantial overlap in meaning and narrative function.

See [289] for more details on the annotation task. We use 50% of these human-annotated

labels to set hyperparameters, and 50% to evaluate match predictions, shown in Table

5.3. Maximum Alignment with TinyBERT-medium embeddings [673] (Max-TB-medium)

performs best13.

5.2.2 Exploratory Analysis

We extract all edit types in our dataset using methods described in the previous section.

Statistics on the total number of changes are shown in Table 5.4. In this section, we analyze

Additions, Deletions and Edits to explore when, how and why these states evolve during

13For more details and examples, see [289]
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Figure 5.7: Dynamics of state-space changes across article version number and across the
article body.

news event coverage and the clues this provides as to why articles are updated14. To

reiterate, we interpret these statistics as constraints on plausible latent actions, not as actions.

Insight #1: Timing and location of state-changes reflect patterns of breaking news and

inverse pyramid article structure. How do edit types evolve from earlier to later versions,

and where do they occur in the news article? In Figure 5.7a, we show that state-space

changes in an article’s early versions are primarily adding or updating information: new

articles tend to have roughly 20% of their sentences edited, 10% added and few deleted.

This fits a pattern of breaking news lifecycles: an event occurs, reporters publish a short

draft quickly, and then they update as new information is learned [676, 677]. We further

observe that updates occur rapidly: outlets known for breaking news15 have a median

article-update time of < 2 hours [289]. An article’s later lifecycle, we see, is determined

by churn: ≈ 5% of sentences are added and 5% are deleted every version. As seen in

Figure 5.7b, additions and edits are more likely to occur in the beginning of an article,

while deletions are more likely at the end, indicating newer information is prioritized in an

inverse pyramid structural fashion. These regularities suggest a transition regime in early

versions characterized by growth and rewriting, shifting to lower-magnitude churn later.

Insight #2: Additions and deletions are more likely to contain fact-patterns associated

14We leave a descriptive analysis of Refactors to future work.
15E.g. Associated Press, The New York Times and Washington Post
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Addition Deletion Unchanged

Contains Event 38.5 39.3 31.4
Contains Quote 48.4 50.0 39.2

Discourse: Main 4.4 4.9 3.6
Discourse: Cause 29.0 30.2 23.6
Discourse: Distant 63.5 61.4 68.1

Table 5.5: % Additions, Deletions or Unchanged sentences that contain Events or Quotes,
or have news discourse role: Main (main events), Cause (immediate context) or Distant
(history, analysis). F < .01, n = 7, 368, 634.

with breaking news (quotes, events, or main ideas) than unchanged sentences. In the

previous section, we showed that the timing and position of state-space changes reflects

breaking news scenarios. To provide further clues about the semantics of state-space

changes, we sample Additions, Deletions and unchanged sentences and study the kinds of

information contained in these sentences. We study three different fact-patterns associated

with breaking news: events, quotes and main ideas [678, 679]. To measure the prevalence of

these fact-patterns, we sample 200,000 documents (7 million sentences) from our corpus and

run an event-extraction pipeline [680], quote-detection pipeline [681], and news discourse

model [145]. As shown in Table 5.5, we find added and deleted sentences have significantly

more events, quotes and Main-Idea and Cause discourse than unchanged sentences. (See

[289] for more details.) Thus, ∆t(st, st+1) correlate with semantic payloads (events, quotes,

main ideas) rather than purely stylistic variation.

Insight #3: Within-sentence edits frequently reflect event updates. The analyses in

the previous sections have established that state-space changes both are positioned in

the article in ways that resemble, and contain information that is described by, breaking

news epistemologies [678]. A remaining question is whether the state-space changes

change fact-patterns themselves, rather than simply changing the style or other attributes

of sentences. One way to measure this is to explore whether state-space changes update

the events in a story [682]. We focus on pairs of edited sentences. We randomly sample
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Event Chains

(attack, killed), (injured, killed), (shot, dead), (shot, killed), (attack, injured), (injured, died),
(election, won), (meeting, talks), (talks, meeting), (elections, election), (war, conflict)

Table 5.6: Selection of top event extracted from edited sentence pairs across article versions.

Edits from documents in our corpus (n = 432, 329 pairs) and extract events using Ma

et al. [680]’s model. We find that edited sentence pairs are more likely to contain events

(43.5%) than unchanged sentences (31.4%). Further, we find that 37.1% of edited sentences

with events contain different across versions. We give a sample of pairs in Table 5.6. This

shows that many within-sentence edits update events. Taken together, we have shown in

this analysis that factual updates drive many of the edit types that we have constructed

to describe NewsEdits revision histories. Next, we measure the predictability of update

patterns.

5.2.3 Predictive Analysis on NewsEdits

As shown in Section 5.2.2, many state-space changes show breaking news patterns, which

Usher [679] observed follow common update patterns. Now, we explore how predictable

these edit types are as a transition problem. Like in Section 3.2.3, we aim prove that these

transitions regular and can support learning for downstream research questions, like those

outlined in Section 5.1 around narrative design (e.g. “which facts in the current version of

this article are likely to change?”, “what resources should a journalist access to improve

this article?”, “what voices should be added to this story?”). To reiterate, we explicitly

frame the tasks below as predicting next states st+1 and observable deltas ∆t from st,

deferring any commitment to an action schema to Section 5.3. In this section, we outline

three tasks16 that involve predicting the future states of articles based on the current state.

These tasks, we hypothesize, outline several modeling challenges: (1) identify indicators of

16These tasks were inspired by Story Cloze and narrative understanding tasks [683, 684].
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uncertainty used in news writing17 [678], (2) identify informational incompleteness, like

source representation [681] and (3) identify prototypical event patterns [685]. These are all

strategies that expert human evaluators used when performing our tasks (Section 5.2.3.6).

The tasks range from easier to harder, based on the sparsity of the data available for each

task and the dimensionality of the prediction. We show that they are predictable but

present a challenge for current language modeling approaches: expert humans perform

these tasks much more accurately than LLM-based baselines. In addition to serving a

model-probing and data-explanatory purpose, these tasks are also practical: journalists told

us in interviews that being able to perform these predictive tasks could help newsrooms

allocate reporting resources in a breaking news scenario18.

5.2.3.1 Task Description and Training Data Construction

We now describe our tasks. For all three tasks, we focus on breaking news by filtering

NewsEdits down to short articles (# sents ∈ [5, 15]) with low version number (<20) from

select outlets19.

Task 1: Will this document update? Given the text of an article at version t, predict if ∃v+1.

This probes whether the model can learn a high-level notion of change, irrespective of

the fact that different state-space changes have different consequences for the information

presented in a news article. For Task 1, y(1) = 1 if a newer version of an article was

published and 0 otherwise. We sample 100, 000 short article versions from NewsEdits,

balancing across length, version number, and y(1).

Task 2: How much will it update? Given the text of an article at version t, predict

in the next version how many Additions, Deletions, Edits, Refactors will occur. This

moves beyond Task #1 and requires the model to learn more about how each edit-type

17E.g. “Police to release details of the investigation.”
18See [289] for more details.
19The New York Times, Associated Press, Washington Post, BBC, Independent, Guardian and Reuters were used,

as they are more known for breaking news [679]. See [289] for more details.
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changes an article. For Task 2, y(2) = counts of sentence-level labels (Num. Additions, Num.

Deletions, Num. Refactors, Num. Edits) described in the previous sections, aggregated

per document. Each count is binned: [0, 1), [0, 3), [3,∞) and is predicted separately as a

multiclass classification problem. We sample 150, 000 short article versions balancing for

sources, length and version number.

Task 3: How will it update? For each sentence in version t, predict whether: (1) the

sentence itself will change (i.e. it will be a Deletion or Edit) (2) a Refactor will occur

(i.e. it will be moved either up or down in the document) or (3) an Addition will occur

(i.e. either above or below the sentence). This task, which we hypothesize is the hardest

task, requires the model to reason specifically about the informational components of each

sentence and understand nuance about structure and form in a news article (i.e. like the

inverse pyramid structure [207]). For Task 3, y(3) = individual sentence-level labels. Labels

are derived for the following subtasks mentioned above: (1) Edit Type is a categorical label

comprising: [Deletion, Edit, Unchanged], expressed as a one-hot vector. (2) Refactor is a

categorical label comprising: [Up, Down, Unchanged], also expressed as a one-hot vector.

(3) Addition Above and Addition Below are each binary labels expressing whether > 1

sentences was added above or below the target sentence. Because some sentences had

Additions above and below, we chose to model this subtask as two separate classification

tasks. We sample 100, 000 short article versions, balancing for sources, length and version

number. For each task, the input X is a document represented as a sequence of sentences.

For each evaluation set, we sample 4k documents balancing for class labels20.

5.2.3.2 Modeling

We benchmark our tasks using a RoBERTa-based architecture shown in Figure 5.8. Spangher

et al. [145] showed that a RoBERTa-based architecture [562] with a contextualization

layer outperformed other LLM-based architectures like Reimers and Gurevych [221] for

20With the exception of some tasks, like Refactors, which are highly imbalanced and cannot be balanced.
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Figure 5.8: Architecture diagram for the model used for edit-prediction tasks. Word-
embeddings are averaged using Self-Attention to form sentence-vectors. A minimal
transformer layer is used to contextualize these vectors (+Contextual Layer). In Tasks 1
and 2, self-attention is used to generate a document-embedding vector.

document-level understanding tasks (further insight given in Section 5.2.3.6). In our

model, each sentence from document d is fed into a pretrained RoBERTa Base model21 to

obtain contextualized word embeddings. The word embeddings are then averaged using

self-attention, creating sentence vectors. For Task 3, these vectors are then used directly

for sentence-level predictions. For Tasks 1 and 2 these vectors are condensed further,

using self-attention, into a single document vector which is then used for document-level

predictions. The sentence vectors are optionally contextualized to incorporate knowledge

of surrounding sentences, using a small Transformer layer22 (+Contextualized in Tables

5.7, 5.8, 5.9). We experiment with the following variations. For Task 2, we train with

less data (n = 30, 000 version pairs) and more data (n = 150, 000 version pairs), balanced

as described in Section 5.2.3.1, to test whether a larger dataset would help the models

generalize better. We also experiment, for all tasks, with freezing the bottom 6 layers of

the RoBERTa architecture (+Partially Frozen) to probe whether pretrained knowledge is

helpful for these tasks. Additionally, we experiment giving the version number of the

older version as an additional input feature alongside the text of the document (+Version).

21We used Wolf et al. [467]’s version, found here https://huggingface.co/roberta-base.
22Specifically, we initialize a 2-layer, 2-headed GPT2 transformer block to perform autoregressive contextu-

alization.
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Num. Adds Num. Deletes Num. Edits Num. Refactors

F1 Mac F1 Mic F1 Mac F1 Mic F1 Mac F1 Mic F1 Mac F1 Mic

Most Popular 19.8 25.0 25.6 47.8 21.9 32.0 39.2 64.5
Random 32.5 33.9 30.2 36.4 31.7 35.1 25.8 35.1

Baseline (n = 30k) 22.1 27.9 25.6 46.5 21.4 30.6 35.2 64.5
(n = 150k) 29.7 36.3 25.7 48.1 22.4 32.8 39.2 64.6
+Partially Frozen 52.2 54.0 44.8 59.0 49.3 53.1 44.3 65.6
+Contextual 50.7 52.2 41.0 57.4 50.8 54.8 45.0 64.3
+Version 52.0 54.5 45.3 59.8 49.9 53.7 43.8 63.1
+Multitask 46.7 50.2 28.2 48.4 42.1 49.5 40.3 55.1

Human 66.4 69.3 64.6 67.5 65.9 75.6 71.3 70.7

Table 5.7: Task 2 Benchmarks: Baseline model performance for document-level edit-
prediction. Counts of Added, Deleted, Edited and Refactored sentences are binned into
roughly equal-sized “low” ([0, 1) sentences), “medium” ([0, 3) sentences), “high” ([3,∞)
sentences) bins. Macro and Micro F1 calculated across bins. (Scores shown are median of
1, 000 bootstrap resamples of the evaluation dataset.)

Finally, for Tasks 2 and 3, we attempt to jointly model all subtasksusing separate prediction

heads for each subtask but sharing all other layers. We use uniform loss weighting between

the tasks. Spangher et al. [145] showed that various document-level understanding tasks

could benefit by being modeled jointly. For our tasks, we hypothesize that decisions

around one operation might affect another: i.e. if a writer deletes many sentences in one

draft they might also add sentences, so we test whether jointly modeling has a positive

effect. We do not consider any feature engineering on the input text, like performing event

extraction [680], even though results in Section 5.2.2 show that certain types of edits are

more likely to contain events. We wish to establish a strong baseline and test whether

models can learn salient features on their own. For more discussion on modeling choices

and hyperparameter values, see [289]. In summary, these experiments probe a transition

view —approximating p(st+1 | st) — while remaining agnostic about latent actions.
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Additions Edit Types Refactors
Above (F1) Below (F1) F1 Mac F1 Mic F1 Mac F1 Mic

Most Popular 0.0 0.00 18.1 20.2 34.7 53.3
Random 11.8 14.4 28.0 38.3 24.7 34.7

Baseline 8.3 0.1 36.5 61.9 35.2 54.2
+Partially Frozen 3.5 0.0 35.4 60.9 35.4 54.6
+Version 0.1 0.0 30.3 59.0 41.6 57.2
+Multitask. 0.0 0.0 27.5 57.8 39.5 54.8

Human 38.6 46.7 63.8 63.5 45.6 91.5

Table 5.8: Task 3 Benchmarks: Baseline model performance for sentence-level edit-
prediction. Addition tasks are: “Was a sentence added below the target sentence?”, “Was a
sentence added above the target sentence?” Edit Types columns are three edits that occur on
the target sentence: “Deletion”, “Editing”, “Unchanged”. Refactor is binned into whether
the target sentence is “Moved Up”, “Moved Down” or “Unchanged”. (Scores shown are
median of 1, 000 bootstrap resamples of the evaluation dataset.)

F1 F1

Most Popular 56.6 Baseline 60.8
Random 50.6 +Partially Frozen 66.0
Human 80.1 +Contextual 61.7

+Version 77.6

Table 5.9: Task 1 Benchmarks: Baseline model performance for next-version edit-prediction
task. Label is binary. (Scores are median of 1, 000 bootstrap resamples of the evaluation
dataset.)

5.2.3.3 Human Performance

To evaluate how well human editors agree on edits, we design two human evaluation tasks

and recruit 5 journalists with ≥ 1 year of editing experience at major U.S. and international

media outlets.

Evaluation Task 1: We show users the text of an article and ask them whether or not there

will be an update. Collectively, they annotate 100 articles. After completing each round,

they are shown the true labels. This evaluates Task 1.
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Evaluation Task 2: We show users the sentences of an article, and they are able to move

sentences, mark them as deleted or edited, and add sentence-blocks above or below

sentences. They are not asked to write any text, only mark the high-level edits: “I would

add a sentence,” etc. Collectively they annotate 350 news articles. After each annotation,

they see what edits actually happened. The raw output evaluates Task 3; we aggregate

their annotations for each article to evaluate Task 2. They are instructed to use their

expert intuition and they are interviewed afterwards on the strategies used to make these

predictions. (See [289] for task guidelines and interviews).

5.2.3.4 Results

As shown in Tables 5.7, 5.8, and 5.9, model-performance indicates that our tasks do range

from easier (Task 1) to harder (Task 3). While our models show improvements above

Random, and Most Popular in almost all subtasks, a notable exception is Task 3’s Addition

subtasks, where the models do not clearly beat Random. We note that this was also the

most difficult subtask for human evaluators.

We observe that +Partially Frozen increases performance on Task 2, boosting perfor-

mance in all subtasks by ≈ 10 points. In contrast, it does not increase performance on Task

3, perhaps indicating that the subtasks in Task 3 are difficult for the current LLM paradigm.

Although adding version embeddings (+Version) boosts performance for Task 1, it does

not seem to measurably increase performance for the other tasks. Finally, performing

Task 2 and 3 as multitask learning problems decreases performance for all subtasks. In

contrast, human evaluators beat model performance across tasks, most consistently in Task

2, with on average performance 20 F1-score points above Baseline models. On Task 3,

human performance also is high relative to model performance. We observe that, despite

Additions in Task 3 being the hardest task, as judged by human and model performance,

humans showed a ≈ 40 point increase above model performance. Humans are also better

at correctly identifying minority classes, with a wider performance gap seen for Macro F1
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Topic (↑) F1 Topic (↓) F1

U.S. Pol. 38.1 Local Pol. 66.8
Business 48.4 War 61.8
U.K. Pol. 50.4 Crime 58.3

Table 5.10: Predictability of edit patterns for y(2) on
documents grouped by topic (document topics derived
from running LDA [686] and assigning the top topic
to the document. Edit patterns in topics (e.g. “local
politics”) are easier to predict than others (e.g. “U.S.
politics”).

y (Add) F1

[0, 1) 16.2
[1, 5) 59.7
[5, 100) 0.9

Table 5.11: Predictability of y(2)
by growth rate: [0, 1) often re-
flects stylistic updates; [5, 100)
is often breaking news. Both are
harder to predict than medium.

scores (i.e. see Edit Types, where the majority of sentences are unchanged).

5.2.3.5 Error Analysis

We perform an error analysis on the Task 2 task and find that there are several categories

of edits that are easier to predict than others. We run Latent Dirichlet allocation on 40, 000

articles, shown in Table 5.1023. We assign documents to their highest topic and find that

articles covering certain news topics (like War) update in a much more predictable pattern

than others (like Business), with a spread of over 26 F1-score points. Further, we find

that certain edit-patterns are easier to differentiate, like articles that grow between 1-5

sentences (Table 5.10). This show us ways to select for subsets of our dataset that are more

standard in their update patterns. The class imbalance of this dataset (Table 5.4) results in

the Most Popular scoring highly. To mitigate this, we evaluate on balanced datasets. Class

imbalanced training approaches [687, 145] might be of further help.

5.2.3.6 Evaluator Interviews

To better understand the process involved with successful human annotation, we conducted

evaluator interviews. We noticed that evaluators first identified whether the main news

event was still occurring, or if it was in the past. If it was still occurring, they tried to predict

23Topic words shown in [289].
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when the event would update (i.e. state-change (st, st+1) inference).24 For the latter, they

considered discourse components to determine if an article’s narrative was complete (i.e.

see Sections 4.1: state-change and action inference, (st, st+1, at)) and analyzed the specificity

of the quotes (i.e. see Sections 3.2.3, 3.6: source action at inference.).25 They determined

where to add information in the story based on structural analysis (i.e. see Section 4.2,

state and action (st, at) inference) 26, and stressed the importance of the inverse pyramid for

informational uncertainty: information later in an article had more uncertainty; if confirmed,

it would be moved up in later versions (i.e. see Section 2.3.3). 27 Finally, they considered

the emotional salience of events; if a sentence described an event causing harm, it would

be moved up (action inference, at)28. Clearly, these tasks demand strong world-knowledge

and common sense, as well and high-level discourse, structural and narrative awareness.

29 I have also tried to point out, in parentheticals, where different kinds of reasoning (i.e.

narrative, factual, news-value; state and action) tie into creative questions that we have

modeled, with emulation learning, throughout thesis. Combining these different forms of

reasoning, as we have seen repeatedly, is challenging for current language models to do.

In fact, current LLMs, for many subtasks, perform worse than guessing. +Multitask

performance actually decreases performance for both Task 2 and Task 3, indicating that

these models learn features that do not generalize across subtasks. This contrasts with what

our evaluators said: their decision to delete sentences often used the same reasoning as,

and were dependent on, their decisions to add. However, we see potential for improvement

in these tasks. Current LLMs have been shown to identify common arcs in story-telling

[689], identify event-sequences [682] and reason about discourse structures [145, 127].

24The longer the timespan, the more information they predicted would be added between drafts.
25E.g. Generic quotes, say a public announcement, would be updated with specific, eye-witness quotes.
26They identified the paragraph that introduced the main event – i.e. the Lede and the Nut Graf – and

added information right after that
27One evaluator called this a “buried cause”. For example, a story about a building collapse had a sentence

near the end about a source mentioning a faulty inspection: in a later draft, this sentence was moved up as it
was confirmed with a second source.

28See [289] full interviews.
29Evaluators told us they “thought like the AP.” The AP, or the Associated Press, has a styleguide [688] that

many outlets use to guide their writing.
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Further, for the ROCStories challenge, which presents four sentences and tasks the model

with predicting the fifth [690, 683], LLMs have been shown to perform scene reconstruction

[691], story planning [450, 692], and structural common sense reasoning [693]. These are all

aspects of reasoning that our evaluators told us they relied on. Narrative arcs in journalism

are often standard and structured [694], so we see potential for improvement.

Summary We introduced a large-scale dataset of news version histories and operationalized

state-change types that make state change observable at the sentence level. We showed

that many changes are fact-driven and that next-state patterns are predictable by experts

but remain challenging for current LM-backed classifiers. Our analysis in this Section is

state- and emission-focused: ∆t are observables of st→st+1, not actions. Going forward, we

will develop a schema describing the types of edits. We are inspired by the Wikipedia

Intentions schema developed by [695], and will present work inspired by this in Section

5.3. We will introduce an explicit edit-intention schema and study policy learning over

latent decisions, connecting our state-change observations in this Section with the actions

behind these edits.
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5.3 Mapping an Action-Space A Onto News Edits

Figure 5.9: We demonstrate the in-
sights we gain from comparing two
versions of an updating article. We
can identify factual updates (e.g.
“Event Update” between 1-1), stylis-
tic updates (e.g. “Style-Guide” be-
tween 2-3) and narrative updates
(e.g. “Add Background” for sentence
addition 2).

In Section 5.2, we introduced the NewsEdits dataset;

we treated version pairs (st, st+1) as fully observ-

able states and categorized different edit types, Addi-

tion, Deletion, Edit, and Refactor. To put this in

terms of emulation, these edit types were estimated

emissions over sentence-level state changes30. We

demonstrated that these edit types were predictable,

thereby providing evidence we could model full edit

trajectories (s1, a1), (s2, a2), . . . to better emulation

humans. Now, we are ready to try to parse the

intentions of editors. In this Section, we adopt the

following terminologies from emulation learning. We

posit a latent action variable at ∈ A that drives state

transitions, st+1 ∼ Pϕ(st+1 | st, at) and a (history-dependent) policy, at ∼ πθ(at | st). Pϕ

captures how edits change a document when a particular edit intention is taken. We abuse

terminology here and allow st, st+1 to refer to emissions, or observed edits, as well as full

article version updates. Finally, we have our inverse model, qθ(at|st, ss+t) which maps

observable sentence-level edits we extract to latent intentions.
30To recap, this is not the first time we are seeing an emissions model. Emissions are signals we use to draw

inferences about the latent variable of interest (a or s). We saw emissions or observation models in Sections 2.2
and 2.3.3, where we could view a only as an emissions, or observation channels Mψ(x, g) and p(x > x′) into the
phenomena we cared about (in Chapter 2, the phenomena we cared about emulate was newsworthiness). We
also saw them in Section 4.5, where we defined emissions modes Cσ(y|a) to utilize different discourse schemas
(in Chapter 4, the phenomena we sought to emulate was story structure.)
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5.3.1 Learning Edit Intentions in Revision Histories

News articles update for different reasons, especially during breaking news cycles where

facts and events update quickly [696]. In this Section, we introduce the edit-intentions

discourse schema to describe actions a taken by the journalist to drive an article from

st → st+1. Next, I will introduce our annotation, and our models to label edit-pairs. This

lays groundwork for Section 5.3.4, where we will predict when facts change. Our goal is to

identify categories of edits, in order to enable different investigations into these different

update patterns. In other words, we describe the following inverse model:

qθ(at,ij|st,i ∪∅, st+1,j ∪∅, Dt, Dt+1) (5.1)

where at,ij is an action or intention (e.g. a “Correction needs to be made”) corresponding

to sentences i and j in article versions t and t + 1 – or ∅ if sentence i was a Deletion or

sentence j was an Addition. Dt and Dt+1 represent the full text of the article versions

t and t + 1. i, j, as stated before, are sentence indices, and range from i ∈ {1, ...n + 1},

j ∈ {1, ...m+1} (where n,m are the number of sentences in Dt, Dt+1 and n+1,m+1 = ∅).

5.3.2 Edit Intentions Schema

Our schema (Fig. 5.10) supplies a hierarchical action ontology A = Afact ∪Astyle ∪Anarr. At

the sentence pair (st,i ∪∅, st+1,j ∪∅), we annotate an intention label at,ij ∈ A (e.g., Event

Update, Quote Added, Add Background). We work with two professional journalists and

one copy editor31 to develop this ontology. Building off work by Zhang and Litman [657]

and Yang et al. [695], we start by examining 50 revision-pairs sampled from NewsEdits.

We developed our schema through 4 rounds of conferencing: tagging examples finding

edge-cases and discussing whether to add or collapse schema categories. Figure 5.10

31Collectively, these collaborators have over 50 years of experience in major newsrooms.
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Factual Edit

Delete/Update/Add
Eye-witness Account

Delete/Add/Update Event

Delete/Add/Update Source-Doc.

Correction

Delete/Add/Update Quote

Additional Sourcing (Other)

Additional Information (Other)

Style edit

Simplification

Emphasize/De-
emphasize Importance

Define term

Style-Guide Adherence

Syntax Correction

Tonal Edits

Sensitivity Consideration

Narrative/Contextual

Delete/Add/Update Analysis

Delete/Add/Update Background

Delete/Add/Update Anecdote

Other

Incorrect Link

Unchanged

Other/None

Figure 5.10: Discourse schema for edit actions A across news edit versions. We organize
revisions into four macro categories: Factual Edits capture changes to the state of the world
— updating events, sources, etc. and making corrections. Style Edits modify form rather
than substance — simplifying, updating syntax or tonality and moves that emphasize or
de-emphasize importance. Narrative/Contextual edits reshape the story’s framing —
adding background, analysis, or anecdotes to situate facts. Other covers housekeeping
cases such as unchanged pairs and sentence-linking errors (see [654] for definitions).

shows our schema, which we organize into coarse and fine-grained labels. We incorporate

existing theories of news semantics into our schema. For instance, “Event Updates”

incorporates definitions of “events” [697], while “Add Background” incorporates theories

of news discourse [698] (discussed more in Sections 4.1, 4.5). “Add Quote” incorporates

definitions from informational sourcing [1](discussed in Sections 3.2) and “Add Anecdote”

incorporates definitions from editorial analysis [128]. See [654] for a deeper discussion

of the theoretical schemas that inform our edit-action schema. Finally, “Incorrect Link”

is an attempt to correct sentence pairs that were erroneously (un)linked by our linking

algorithm in Section 5.2.1.3. As such, our edit schema brings together several different

tasks — each with their own action vocabulary — that we have considered so far. It is a

distillation of emulation in many parts the creative process of news writing.32

32A criticism could be: why did we need to annotate and learn a single inverse model for multiple different
parts of the creative process, especially when we already performed large-scale annotation in other prior
Sections for specific parts of this process? Firstly, and most importantly, we wanted to incorporate information
about st and st+1 in our inverse model. Secondly, we aimed to confirm that the multiple discourse schemata
we introduced were converging and agreeing, which we explore in our Experimental Variations.
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All Fact Style Narrative

Features Macro Micro Macro Micro Macro Micro Macro Micro

Baseline, fine-grained 45.8 73.6 32.0 47.2 58.6 39.9 52.0 39.9

+ NLI 48.6 74.1 45.7 50.4 55.2 38.7 43.6 38.7
+ Event 46.7 74.1 39.0 49.0 59.3 41.4 41.7 41.4
+ Quote 46.3 72.8 49.8 54.7 31.9 28.0 42.4 28.0
+ Collapsed Quote 51.2 73.9 38.7 47.6 58.3 39.4 51.4 39.4
+ Discourse 45.8 75.1 37.7 49.6 63.8 44.6 43.2 44.6
+ Argumentation 48.9 73.6 37.1 47.9 57.1 37.7 53.5 37.7

+ Discourse & Event 46.3 74.3 38.9 49.9 62.1 42.2 42.4 42.2
+ Discourse & Argumentation 47.8 74.1 56.8 50.5 31.4 32.2 41.1 32.2
+ Argumentation & Event 50.0 75.1 38.0 48.6 46.4 44.9 58.5 44.9
+ Quote & Discourse 51.2 72.2 40.5 45.3 62.8 43.0 48.7 43.0
+ Collapsed Quote & Discourse 49.6 73.9 45.6 49.4 58.9 39.1 47.9 39.1
+ Collapsed Quote & NLI 45.4 72.8 41.9 50.4 46.7 31.2 39.3 31.2

+ Collapsed Quote & NLI & Event 49.0 73.8 44.9 48.9 57.4 37.0 44.0 37.0

+ All 47.2 73.6 40.0 49.7 58.6 36.0 43.5 36.0

Baseline, coarse-grained 49.4 56.7 46.6 65.1 10.4
+ Discourse & Arg. (Best model, Fact) 65.4 70.7 59.4 66.2 49.2

Table 5.12: F1 scores (%) on our test set of the fine-tuned LED model with different
combinations of features. Fact/Style/Narrative F1 scores are computed on instances that
contain the corresponding labels, whereas All F1 scores are derived from all instances.

5.3.2.1 Schema Annotation

We build an interface for annotators to provide intention labels for news article sentence

pairs (details given in [654]). Annotators are shown definitions for each fine-grained

intention and the articles to tag; they are instructed to tag each sentence. We develop

our interface in D3. To recruit annotators, we posted on two list-serves for journalism

industry professionals33. We train our annotators until they are all tagging with κ > .6

agreement, compared with a gold-set of 50 article revision-pairs that we annotated,

described previously (Section 5.3.2). See [654] for more details.
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5.3.2.2 Edit Intentions Modeling

Now, we are ready to classify edit intentions between sentences in article revisions. As

stated previously, edit intentions at,ij are labeled on the sentence-pair level (including

Additions and Deletions), and sentence-pairs has potentially multiple intention-labels.

Document-level context is important: as shown in Figure 5.9, understanding that Sentence

2, right, adds background (“It hit the Fukushima plant, site of previous disaster.”) is aided by the

surrounding sentences contextualizing that a major event had just occurred. So, we wish

to construct models that can produce flexible outputs and reason about potentially lengthy

inputs. Generative models have recently been shown to outperform classification-based

models in document understanding tasks [699, 700]. Inspired by this, we develop a

sequence-to-sequence framework using LongFormer 34 [460] to predict the intent behind

each edit. We adopt three weak assumptions to make at,ij learnable: (1) Sparsity: |at| is small

(few intentions per version step). (2) Locality: each at,ij primarily depends on a bounded

window in Dt, Dt+1. (3) Stability: the inverse model qθ(at,ij|st,i ∪∅, st+1,j ∪∅, Dt, Dt+1) is

time-stationary within an outlet/topic up to noise. The decoding target is multilabel, i.e.

at,ij =
[
a
(1)
t,ij, a

(2)
t,ij, . . .

]
is a concatenation of ≥ 0 intention labels for the pair st,i, st+1,j .

Experimental Variants As discussed in Section 5.3.2, we developed our schema to bring

together different theories of news semantics and large parts of the creative process that we

have explored so far. So, we hypothesize that incorporating insights from these theories into

our modeling – specifically, by utilizing labels from trained models in these domains – might

improve our performance. We run models from the following papers over our dataset:

Discourse (Section 4.5), Quote-Type Labeling (Section 3.2), Event Detection [701], Textual

Entailment [702] and Argumentation [128]. Labels generated from these models, denoted as

fst,i and fst+1,j
, are appended to the model input: [st,i ∪∅||st+1,j ∪∅||Dt||Dt+1||fst,i ||fst+1,j

].

33The Association of Copy Editors (ACES) https://aceseditors.org/ and National Institute for Computer-
Assisted Reporting (NICAR) https://www.ire.org/hire-ire/data-analysis/.

34https://huggingface.co/allenai/led-base-16384
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Edit-Intention Tagging Model Performance As shown in Table 5.12, our baseline tagging

models that solely use article features score 45.8 Macro F1 and 73.6 Micro F1, respectively.

These scores are moderate-to-low. The category we are most interested in, Factual updates,

scores at 32 Macro-F1 (derived from macro-averaging the fine-grained categories). However,

incorporating additional features increases overall Macro and Micro F1 by 5.5 and 1.5

points, respectively, in the Quotes & Discourse trial. And for Factual updates, additional

features increase Macro and Micro F1 accuracy by 17.8 and 7.5 points, respectively. While

low-to-moderate scores are not ideal, this likely reflects the noisy nature of our problem.

For details and schema definitions, see [654].

5.3.3 Exploratory Insights

Different edit-intentions distribute differently across different edit types. We run the

models trained in Section 5.2 over the entire NewsEdits corpus to generate silver-labels state-

change categories on all edit pairs (i.e. Add, Deletion, Update). We present an exploratory

analysis of these silver labels, with more material shown in [654]. Table 5.13 shows the

correlation between syntactic edit categories (defined by [289]) and our semantic categories.

As can be seen, categories like Addition have far more Narrative and Factual updates than

Stylistic updates; Stylistic updates, on the other hand, are far more likely to occur between

sentences. This is logical; Stylistic updates are likely smaller, local updates, while Narrative

and Factual updates might include more rewriting.

Different edit-intentions distribute differently across different kinds of news (e.g.

Business, Politics). Next, we explore if certain kinds of articles are more likely to have certain

kinds of edits. We start by looking at broad news categories, shown in Table 5.14, obtained

from classifier we train on CNN News Groups dataset35. “Politics” and “Sports” coverage

are observed to have the highest level of Factual updates, relative to other categories, while

Stylistic updates are prevalent in “Health” and “Entertainment” pieces. Although we

35https://www.kaggle.com/code/faressayah/20-news-groups-classification-prediction-cnns
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Narrative Fact Style

Addition 840329 358900 104
Deletion 330039 21671 6088
edit 411292 102499 644243

Table 5.13: Counts of coarse-grained semantic edit types, broken out by syntactic categories
(for fine-grained counts, see [654]).

Fact Style Narrative

Business 1.6 62.0 36.4
Entertainment 3.3 65.5 31.1
Health 2.1 61.0 36.9
News 2.8 57.0 40.2
Politics 5.9 57.8 36.3
Sport 3.5 59.3 37.2

Table 5.14: Distribution over update-types, across CNN section classifications.

focus on Factual updates for the rest of the paper, we believe that there are many fruitful

directions of future work examining other categories of updates. For instance, stylistic

edits made in “Health” news might reach more readers – understanding these patterns

might be crucial during times of crisis. We include additional exploration in [654].

5.3.4 Predicting Factual Updates

In Section 5.3.1, we learned high-scoring models to categorize edit pairs (Equation 5.1).

Now, we wish to leverage these to learn a predictive policy function:

π(a = Factual-Update|st,i, Dt) (5.2)

Where st,i and Dt are the older half of a revision pair. This policy function (Eq 5.2)

seeks to predict how D might change; in other words, it asks should there be a factual edit on

sentence st,i? The problem statement builds off of our line of inquiry introduced previously,
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in Section 5.2.3. There, we introduced tasks aimed at predicting news article developments

across time. We tried to predict whether a “sentence will be Added to, Deleted from,

or Updated in” an older draft, to induce reasoning about article changes. However, we

stopped at this state-change analysis. Here, we build off of this mode of inquiry and train

a true policy function: with an action-oriented understanding of edits introduced in this

section, we try to predict how information will change.

5.3.4.1 Factual Edit Prediction Dataset

To construct our task dataset, we sample revision pairs with a non-negligible amount of

updates. We sample a set of 500,000 articles from NewsEdits that have > 10% sentences

added and > 5% deleted. We acknowledge that this introduces bias into our dataset,

as we focus solely on a subsection of data we know will update. However we build off

of our broader analysis of syntactic edits patterns in Section 5.2, where we found that

these kinds of articles could be predicted with reasonable accuracy. We reason that our

construction makes it more likely that we are focusing on factual updates that have more

significant impact on the article (as they require more substantial rewrites.) Then, we use

the best-performing edit-intentions model, in Section 5.3.2.2, to produce silver labels. We

assign labels ãt,ij using our inverse model (Equation 5.1); then we discard Dt+1, st+1,j and try

to predict at,i = {at,ij}m+1
j=1 using just Dt, si,t (Equation 5.2).

5.3.4.2 Predicting Factual Edits

For training and development, we chronologically split our dataset into train/development

sets with 80/20 ratios. The earliest 80% is our training set, the next 20% for development,

etc. To keep cost reasonable, we sample 16,000 sentences for the training set and 2,000 for

the development set. We test all approaches on the same gold-labeled documents Dgold
test ,

which were part of our gold-annotated test set (Section 5.3.2.1). In early experiments, we

noticed that many fine-grained labels were too infrequent to model well, so we switched to
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Model Features Fact F1 Not Fact F1 Macro F1 Micro F1

GPT-3.5
Sentence-Only 11.3 79.1 30.4 74.2
Direct Context 3.4 91.8 32.2 85.2
Full Article 7.9 91.1 49.8 85.4

GPT-4
Sentence-Only 11.1 66.3 38.9 62.4
Direct Context 14.8 88.8 52.7 84.1
Full Article 15.4 90.6 53.2 84.9

FT Longformer
Sentence-Only 21.2 92.3 57.4 87.0
Direct Context 22.3 93.0 87.8 87.4
Full Article 25.4 91.4 58.0 86.4

Human Performance Sentence-Only 41.2 75.3 58.6 69.2

Table 5.15: How well can models predict if a sentence will have a fact update, or not? We
test GPT3.5 and GPT4. Individual, macro and micro F1 scores (%) on the golden test set
for various evaluated models.

predicting coarse-grained labels. We balance the training dataset to have an equal number

of classes.

Factual Edit Prediction We test three different variants of Equation 5.2 to provide different

degrees of article context to the policy model: (1) Sentence-Only, π(at,i|st,i); (2) Direct

Context, π(at,i|st,i−1, st,i, st,i+1); and (3) Full Article, π(a|st,i, Dt). This helps us understand

how much local vs. global article features predict Factual Updates. For each variant we

test zero-shot (i.e. prompted gpt-3.5-turbo and gpt-4); and fine-tuning approaches (i.e.

longformer models)36.

Results are shown in Table 5.15. Performance is moderate-to-low for detecting factual

updates. However, we do observe performance increases from fine-tuning the longformer

model, so to some degree this task is learnable. We recruit a former journalist, with 4 years

of experience in major newsrooms, to predict labels for this task, in order to provide a

human upper bound to Equation 5.2. The journalist observes the training data, and then

36The longformer is trained with the same approach as the silver-label prediction step from Section 5.3.2.2.
In early trials, we try different variations on these experiments, like restricting the dataset to different subsets
based on topic, like “Disaster” or “Safety”. These topic categories, as shown in Section 5.3.3, are more
fact-heavy. However, we find negligible impact on F1-score.
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Sent. Contains: Fact U. Fact U. ∆

Recent Event 50% 8% 42%
Developing Event 30% 0% 30%
Statistic 28% 8% 19%
Info. request 12% 0% 12%
Historical Event 0% 17% -17%
Opinion/Analysis 2% 39% -36%
Description 10% 50% -40%

Table 5.16: Linguistic Cues characterizing Factual Updates: Manual annotations of
characteristics in Dgold

test sentences that either Factually Update, or not. We show the %
of sentences containing these characteristics, ordered by those most salient for Factual
Updates.

Sentences with ↑ p(l|si, D)

There are no immediate reports of casualties.
His trial has not yet started.
Officials said attackers fired as many as 30 rockets in Friday’s assault.
The rebel group did not immediately comment.

Table 5.17: A small sample of sentences in the high-likelihood region of p(l|si, D). More
examples shown in Table 5.21.

scores the test set. At 41.2 F1-score, the journalist sets a moderately higher upper bound.

Linguistic Cues Characterize Factual Edits. LLMs are bad at detecting these. Interestingly,

sentence-level characteristics seem to contain much of the signal for this task: as shown

in Table 5.15, the performance barely increases by including the Full Article as context (a

finding we did not observe in our tagging task, in Section 5.3.2). To gain a deeper intuition

about these sentence-level cues, we sample 100 sentences from Dgold
test that have been labeled

as either having a Factual Update or not (i.e. another kind of update, or no update at all).

We show results in Table 5.16. We identify cues like the temporality of an event described

in the sentence as important, and whether the sentence contains statistics, analysis or other

kinds of news discourse [698]. Interestingly, sentences that Factual Update are more likely
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to contain Recent Events and Developing Events, compared with Opinion, Historical Events

and Description. (See [654] for definitions of these discourse patterns). This would explain

in part why language models underperform human reasoning in predicting updates. We

find that GPT4 generally has low agreement with human annotators on these tasks, at

κ = .2. Researchers have generally found that LLMs struggle with this kind of reasoning

[703, 704]. Recent modeling advancements might help us perform these tasks better [705].

This prediction task is noisy: many sentences may look similar, but may or may not

have had Factual Updates, due to chance. Indeed, even expert human annotators have low

prediction scores. However, we hypothesize that data that the model is most confident

about (or the high-precision region), are more uniformly predictable. We show samples of

these sentences in Table 5.17. These sentences contain many of the linguistic cues identified

in 5.16. See Table 5.21 for more examples of high-probability sentences (and Table ?? for

examples of low-probability sentences). We focus on these high-precision sentences in the

next section.

5.3.5 Question Answering with Outdated Documents

We are ready to test whether the prediction models learned in the last section, to predict

whether a sentence will have a Factual update, can help us in dynamic LLM Q&A tasks.

We set up a RealTimeQA-style task [706], where an LLM is supplied by a retrieval system

with potentially out-of-date information. We would like the LLM to abstain from answering

a question if it suspects it’s information might be outdated. Consider the scenario in Table

5.18. As humans, we could infer that the ongoing events in the old sentence would be

of relatively short time-scale. Thus, if a retriever retrieves the old sentence for the LLM,

without knowledge of the new sentence, we would like the LLM to answer the question

with something like: “I do not have the most updated information and this might change quickly”.

Confidently answering without any caution as to the updating nature of events is wrong.
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Old sentence: The White House is on lockdown after a vehicle struck a security barrier.

New sentence: The White House was on lockdown for about an hour after a vehicle struck ...

Question: “Can I visit the White House right now?”

Table 5.18: LLM Abstention Demonstration: In this example, the LLM only has access
to the old, outdated article. We wish to probe whether LLMs can reason about the
information’s likelihood of being outdated and be cautious about answering this question.

No-Conflict Maybe-Conflict Likely-Conflict
F1 Micro F1 Macro Avg. F1 Micro F1 Macro Avg F1 Micro F1 Macro Avg.

No Warn 55.9 35.8 55.9 8.8 8.1 8.8 38.8 28.0 38.8
Const. Warn. 52.9 49.6 52.9 90.0 47.4 90.0 64.7 54.0 64.7
w. Pred. 59.4 48.9 59.4 90.6 61.1 90.6 67.1 62.4 67.1
w. Oracle 57.6 47.7 57.6 90.0 63.3 90.0 66.5 61.1 66.5

Table 5.19: LLM-QA Abstention Accuracy: we measure how often GPT4 correctly abstains
from answering user-questions, based on the ground truth of whether the facts in an article
updated or not. Each variant shows different information that GPT4 is given. We generate
questions in three categories: No-Conflict, Maybe-Conflict, Likely-Conflict, representing
how likely the answer to the question will be outdated after a factual update.

5.3.5.1 LLM-QA Experiments

Experimental Design We take pairs of sentences in the gold test set of our annotated data

where an update occurred, and we ask GPT4 to ask questions based on the older sentence.

No-Conflict: 5 questions based on information in the older sentence that does NOT update

in the newer one. Maybe-Conflict: 5 questions based on information in the older sentence

that might update in the newer one. Likely-Conflict: 5 questions based on information from

the older sentence likely updates with a newer one. (For all prompts, see [654]).

Experimental Variants We devise the following experimental variants. Each variant take

in the old sentence and a question, generated previously. No Warning (Baseline #1): We

formulate a basic prompt to GPT4, without alerting it to any possibly outdated material.

Uniform Warning (Baseline #2) We warn GPT4 that some information might be outdated.

The warning is the same for all questions, so GPT has to rely on its own reasoning to detect
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No-Conflict Maybe-Conflict Likely-Conflict

No Warning 0.0 0.0 0.0
Uniform Warning 30.0 87.1 98.8
w. Update Pred. 10.6 74.1 95.9
w. Oracle Update 12.4 75.9 94.1

Table 5.20: Likelihood of abstaining in the three test cases: No factual conflict, Maybe
factual conflict, Likely factual conflict. In general, we wish to refrain only when we need
to. Over-refraining is bad.

information that could be potentially outdated. w/ Our Update Likelihood: We give GPT4

predictions from our Factual Update model, binned into “low”, “medium”, “high” update

likelihood. (We use the highest-scoring LED variation).

w/ Oracle Update: We give GPT4 gold labels that a fact-update did or did NOT occur. This is

designed to give us an upper bound on abstention.

Abstention Rate Evaluations We evaluate performance of each prompting strategy using a

GPT4-based evaluation. We ask GPT4: (1) Is this question answerable given the information

in the old sentence? (2) Is the answer consistent with the information presented in the

revised sentence? We manually label a small set of 100 questions, to verify that GPT4 can

perform this task, and find high agreement κ > .74 for both questions. If the answer to both

questions is yes, the LLM should attempt to provide an answer. If either of the answers is

“no”, then we want the LLM to ABSTAIN from answering. Abstaining when it should is a

success; any other answer is a failure. We show F1 scores in Table 5.19. Interestingly, and

perhaps unexpectedly, the variant with Update Predictions does as well if not better than

the variant with Oracle Updates. Perhaps the categories of the prediction score helps GPT4

better understand the task compared with the simple yes/no gold labels. The Uniform

Warning (Baseline #2) variation has surprisingly strong performance as well, perhaps an

indication that GPT4 does have some emergent abilities to detect the linguistics of outdated

information. However, when we examine overall abstention rates, shown in Table 5.20, we

find that this baseline has a far abstention rate. Meanwhile, the variant with Update

278



5.3 Mapping an Action-Space A Onto News Edits

Top Predictions for Content Evolution Prediction, p(l = Fact Update|si, D)

The company takes this recommendation extremely seriously,” it said in a statement.
KABUL, Afghanistan — An Afghan official says a powerful suicide bombing has targeted a U.S. military

convoy near the main American Bagram Air Base north of the capital Kabul.
WASHINGTON — The U.S. carried out military strikes in Iraq and Syria targeting a militia blamed for an

attack that killed an American contractor, a Defense Department spokesman said Sunday.
Mr. Causey, who reported his concern to authorities, was not charged in the indictment, which a grand

jury returned last month, and did not immediately comment.
His trial has not yet started.
MEXICO CITY — A fiery freeway accident involving a bus and a tractor-trailer killed 21 people in the

Mexican state of Veracruz on Wednesday, according to the authorities and local news outlets.
The indictment accuses Mr. Hayes, a former congressman, of helping to route $250,000 in bribes to the

re-election campaign of Mike Causey, the insurance commissioner.
No Kenyans died in the attack, Kenya’s military spokesman Paul Njuguna said Monday.
Mr. Manafort, 70, will most likely be arraigned on the new charges in State Supreme Court in Manhattan

later this month and held at Rikers, though his lawyers could seek to have him held at a federal jail in
New York, the people with knowledge said.

Officials said attackers fired as many as 30 rockets in Friday’s assault.
KABUL, Afghanistan — Gunmen attacked a remembrance ceremony for a minority Shiite leader in

Afghanistan’s capital on Friday, wounding at least 18 people, officials said.
BEIRUT — A senior Turkish official says Turkey has captured the older sister of the slain leader of the

Islamic State group in northwestern Syria, calling the arrest an intelligence “gold mine. ”
Paul J. Manafort, President Trump’s former campaign chairman who is serving a federal prison sentence,

is expected to be transferred as early as this week to the Rikers Island jail complex in New York City,
where he will most likely be held in solitary confinement while facing state fraud charges, people
with knowledge of the matter said.

The watchdog, the Securities and Exchange Surveillance Commission, said Tuesday it made the recom-
mendation to the government’s Financial Services Agency on the disclosure documents from 2014
through 2017.

There are no immediate reports of casualties.
It said the U.S. hit three of the militia’s sites in Iraq and two in Syria, including weapon caches and the

militia’s command and control bases.
The rebel group did not immediately comment.
Kep provincial authorities later announced a total of five dead and 18 injured.
QUETTA, Pakistan — Attackers used a remotely-controlled bomb and assault rifles to ambush a convoy of

Pakistani troops assigned to protect an oil and gas facility in the country’s restive southwest, killing
six soldiers and wounding four, officials said Tuesday.

WASHINGTON — Senator Bernie Sanders of Vermont raised $18.2 million over the first six weeks of his
presidential bid, his campaign announced Tuesday, a display of financial strength that cements his
status as one of the top fund-raisers in the sprawling Democratic field.

Table 5.21: Sample of the most likely fact-update sentences, as judged by our top-performing
model. Top predictions reflect a combination of statistics, recent or upcoming events, and
waiting for quotes.
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Predictions abstains at nearly the same rates as that with Oracle Updates.

Summary The ability of our prediction tags to recover near-oracle performance signals

that factual edit prediction can serve a useful role in LLM Q&A. We do suspect there to

be an inherent upper bound in our ability to model such revision patterns. Randomness

undoubtedly exists in the editing and revision process; for many factual updates where,

perhaps, the ethical stakes of outdated information are lower, journalists may choose not

to go back and revise. We still see such work as promising. Indeed, it is surprising that,

despite low scores on the modeling components for Part 1 (Edit-Intention Tagging) and

Part 2 (Factual Edit Prediction), we still observe useful downstream applications in Part 3.

The linguistic insights we are observe concord with human intuition, and identify known

shortcomings of current language models.
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5.4 Chapter Conclusion

In this Chapter, we observed how additional, partial observability into human workflows

could yield tangible insights and improvements in emulation learning. Mirroring “ghost

condition” experiments in cognitive science [89], we show how edit revision histories can

be leveraged to provide intermediate state information: given si,j where i is the version

number and j is the draft number within the version, we have derived observability into:

s1,n1 , s2,n2 . . . , the sequence of final drafts in each version. In Section 5.2, we introduced the

NewsEdits dataset, which provides this version-level observability; we developed observation

channels to parse atomic state-changes between versions (i.e. Addition, Edit, Deletion). We

also showed composability and predictability in edits; in other words, we showed that

P (st+1|st) was predictable, highlighting the role that edit histories can play in providing

useful temporal orderings. In Section 5.3, we introduced an action space,A on top of atomic

state-changes. We showed that not only could we learn and predict these actions, but policy

models π(at+1|at, st) were practically useful for us to integrate into downstream tasks like

QA abstention.

This Chapter suitably closes my work, as it completes the emulation formulation of

news edits. Edits are an especially exciting direction in emulation: despite the existence

of many revisions datasets [707, 708], they are not commonly used, to my knowledge, for

the purposes of increased state observability and better action inference. This direction

and it’s potential in emulation learning has barely been scratched. I hope it can emerge as

an important part of learning complex, creative workflows. I am also personally proud

of this work, as it explicitly brings together so many of the multiple different discourse

schemata, covering multiple parts of the news-generating creative process into one unified

action vocabulary. I hope more broadly that the work introduced here has rich directions

forward. We hope in future work to revise directions around stylistic and narrative edits,

both of which we believe can lead to better tools for computational journalists.

281



Bibliography

Bibliography

[1] Alexander Spangher et al. “Identifying Informational Sources in News Articles”. In:
arXiv preprint arXiv:2305.14904 (2023).

[2] Pieter Abbeel and Andrew Y Ng. “Inverse reinforcement learning”. In: Encyclopedia
of machine learning. Springer, 2011, pp. 554–558.

[3] Pengjie Gao, Chang Lee, and Dermot Murphy. “Financing Dies in Darkness? The
Impact of Newspaper Closures on Public Finance”. In: Political Economy: Government
Expenditures & Related Policies eJournal (2019). url: https://api.semanticscholar.
org/CorpusID:85451380.

[4] Jonas Heese, Gerardo Perez Cavazos, and Caspar David Peter. “When the Local
Newspaper Leaves Town: The Effects of Local Newspaper Closures on Corporate
Misconduct”. In: Political Institutions: Federalism & Sub-National Politics eJournal
(2021). url: https://api.semanticscholar.org/CorpusID:236975019.

[5] James M. Jr. Snyder and David Strömberg. “Press Coverage and Political Ac-
countability”. In: Journal of Political Economy 118 (2008), pp. 355–408. url: https:
//api.semanticscholar.org/CorpusID:154635874.

[6] James T Hamilton. Democracy’s detectives: The economics of investigative journalism.
Harvard University Press, 2016.

[7] Thomas Peele et al. “Don’t Stop the Presses! When Local News Struggles, Democracy
Withers”. In: Wired (Nov. 30, 2017).

[8] Victor Pickard. “A new business model for journalism”. In: Axios (Feb. 22, 2024).

[9] K. T. Greene et al. “An evaluation of online information acquisition in US news ...”
In: Nature (Scientific Reports) (2024).

[10] Northwestern University Medill School of Journalism. “State of Local News: 2024
Report”. In: Reuters Institute (via Medill) (2024).

[11] Peter Carragher, Evan M. Williams, and Kathleen M. Carley. “Misinformation Re-
silient Search Rankings with Webgraph-Based Interventions”. In: ACM Transactions
on Intelligent Systems and Technology 16.1 (2025), pp. 1–27. doi: 10.1145/3670410.

[12] Rajvardhan Oak et al. “Re-ranking Using Large Language Models for Mitigating
Exposure to Harmful Content on Social Media Platforms”. In: Proceedings of the 63rd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers).

282

https://api.semanticscholar.org/CorpusID:85451380
https://api.semanticscholar.org/CorpusID:85451380
https://api.semanticscholar.org/CorpusID:236975019
https://api.semanticscholar.org/CorpusID:154635874
https://api.semanticscholar.org/CorpusID:154635874
https://doi.org/10.1145/3670410


Bibliography

Vienna, Austria: Association for Computational Linguistics, July 2025, pp. 894–908.
doi: 10.18653/v1/2025.acl-long.44. url: https://aclanthology.org/2025.acl-
long.44/.

[13] Bowen Jin et al. Search-R1: Training LLMs to Reason and Leverage Search Engines with
Reinforcement Learning. arXiv preprint. 2025. doi: 10.48550/arXiv.2503.09516.
arXiv: 2503.09516 [cs.CL]. url: https://arxiv.org/abs/2503.09516.

[14] Puxuan Yu et al. “Search Result Diversification Using Query Aspects as Bottlenecks”.
In: Proceedings of the 32nd ACM International Conference on Information and Knowledge
Management (CIKM ’23). Birmingham, United Kingdom: Association for Computing
Machinery, 2023, pp. 3040–3051. doi: 10 . 1145 / 3583780 . 3615050. url: https :
//dl.acm.org/doi/10.1145/3583780.3615050.

[15] Shivanshu Gupta. “Demonstration Selection and Task Formulation for Effective
In-Context Learning”. Ph.D. dissertation. PhD thesis. Irvine, CA: University of
California, Irvine, 2025. url: https://escholarship.org/uc/item/3h22z31f.

[16] Vladimir Karpukhin et al. “Dense Passage Retrieval for Open-Domain Ques-
tion Answering”. In: Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP). Association for Computational Linguis-
tics, 2020, pp. 6769–6781. doi: 10.18653/v1/2020.emnlp-main.550. url: https:
//aclanthology.org/2020.emnlp-main.550/.

[17] Alexander Spangher et al. “Tracking the newsworthiness of public documents”.
In: arXiv preprint arXiv:2311.09734 (Aug. 2023). Ed. by Lun-Wei Ku, Andre Martins,
and Vivek Srikumar, pp. 14150–14168. doi: 10.18653/v1/2024.acl-long.763. url:
https://aclanthology.org/2024.acl-long.763.

[18] Alexander Spangher et al. “A Novel Multi-Document Retrieval Benchmark: Journal-
ist Source-Selection in Newswriting”. In: Proceedings of the 4th International Workshop
on Knowledge-Augmented Methods for Natural Language Processing. Ed. by Weĳia Shi et
al. Albuquerque, New Mexico, USA: Association for Computational Linguistics, May
2025, pp. 180–204. isbn: 979-8-89176-229-9. doi: 10.18653/v1/2025.knowledgenlp-
1.18. url: https://aclanthology.org/2025.knowledgenlp-1.18/.

[19] Alexander Spangher et al. “DiscoSum: Discourse-aware News Summarization”. In:
arXiv preprint arXiv:2506.06930 (2025).

[20] Louis Bradshaw et al. “Scaling Self-Supervised Representation Learning for Sym-
bolic Piano Performance”. In: arXiv preprint arXiv:2506.23869 (2025).

[21] Ryan Lee, Alexander Spangher, and Xuezhe Ma. “Patentedits: Framing patent
novelty as textual entailment”. In: arXiv preprint arXiv:2411.13477 (2024).

283

https://doi.org/10.18653/v1/2025.acl-long.44
https://aclanthology.org/2025.acl-long.44/
https://aclanthology.org/2025.acl-long.44/
https://doi.org/10.48550/arXiv.2503.09516
https://arxiv.org/abs/2503.09516
https://arxiv.org/abs/2503.09516
https://doi.org/10.1145/3583780.3615050
https://dl.acm.org/doi/10.1145/3583780.3615050
https://dl.acm.org/doi/10.1145/3583780.3615050
https://escholarship.org/uc/item/3h22z31f
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://aclanthology.org/2020.emnlp-main.550/
https://aclanthology.org/2020.emnlp-main.550/
https://doi.org/10.18653/v1/2024.acl-long.763
https://aclanthology.org/2024.acl-long.763
https://doi.org/10.18653/v1/2025.knowledgenlp-1.18
https://doi.org/10.18653/v1/2025.knowledgenlp-1.18
https://aclanthology.org/2025.knowledgenlp-1.18/


Bibliography

[22] Susanne K Langer. Philosophy in a new key: A study in the symbolism of reason, rite, and
art. Harvard University Press, 1942.

[23] Johan Galtung and Mari Holmboe Ruge. “The structure of foreign news: The
presentation of the Congo, Cuba and Cyprus crises in four Norwegian newspapers”.
In: Journal of peace research 2.1 (1965), pp. 64–90.

[24] Stuart Hall. Writings on media: History of the present. Duke University Press, 2021.

[25] Teun A Van Dĳk. News as discourse. Routledge, 2013.

[26] Alexander Spangher et al. “Sequentially Controlled Text Generation”. In: arXiv
preprint arXiv:2301.02299 (2023).

[27] Arnold Schoenberg, Gerald Strang, and Leonard Stein. “Fundamentals of musical
composition”. In: (1967).

[28] Shunyu Yao et al. “React: Synergizing reasoning and acting in language models”.
In: International Conference on Learning Representations. 2023.

[29] B. F. Skinner. Walden Two. New York: Macmillan, 1948.

[30] Burrhus Frederic Skinner. Science and human behavior. 92904. Simon and Schuster,
1965.

[31] Willem JM Levelt. “Producing spoken language: A blueprint of the speaker”. In:
The neurocognition of language 83 (1999), p. 122.

[32] Christiane Donahue and Theresa Lillis. “Models of writing and text production”.
In: Handbook of writing and text production (2014), pp. 55–78.

[33] Hao Sun and Mihaela van der Schaar. “Inverse Reinforcement Learning Meets
Large Language Model Post-Training: Basics, Advances, and Opportunities”. In:
arXiv preprint arXiv:2507.13158 (2025). arXiv: 2507.13158.

[34] Azra Ismail et al. “Public Health Calls for/with AI: An Ethnographic Perspective”.
In: Proceedings of the ACM on Human-Computer Interaction 7 (2023), pp. 1–26. url:
https://api.semanticscholar.org/CorpusID:263621116.

[35] Asbjørn Malte Pedersen and Claus Bossen. “Data Work Between the Local and the
Global: An Ethnography of a Healthcare Business Intelligence Unit”. In: Proceedings
of the ACM on Human-Computer Interaction 8 (2024), pp. 1–28. url: https://api.
semanticscholar.org/CorpusID:269461412.

284

https://arxiv.org/abs/2507.13158
https://api.semanticscholar.org/CorpusID:263621116
https://api.semanticscholar.org/CorpusID:269461412
https://api.semanticscholar.org/CorpusID:269461412


Bibliography

[36] Riyaj Isamiya Shaikh et al. “Fleeting Alliances and Frugal Collaboration in Piecework:
A Video-Analysis of Food Delivery Work in India”. In: Comput. Support. Cooperative
Work. 33 (2024), pp. 1289–1342. url: https://api.semanticscholar.org/CorpusID:
270678856.

[37] Kalle Kusk. “Flexible Platforms? An Ethnographic Study of Flexible Scheduling in
Platform-Mediated Delivery”. In: Proceedings of the 2025 CHI Conference on Human
Factors in Computing Systems (2025). url: https://api.semanticscholar.org/
CorpusID:278063039.

[38] Ju-Yeon Jung et al. “How Domain Experts Work with Data: Situating Data Science
in the Practices and Settings of Craftwork”. In: Proceedings of the ACM on Human-
Computer Interaction 6 (2022), pp. 1–29. url: https://api.semanticscholar.org/
CorpusID:248002739.

[39] Sachita Nishal, Jasmine Sinchai, and Nicholas Diakopoulos. “Understanding prac-
tices around computational news discovery tools in the domain of science journal-
ism”. In: Proceedings of the ACM on Human-Computer Interaction 8.CSCW1 (2024),
pp. 1–36.

[40] S. Petridis et al. “AngleKindling: Supporting Journalistic Angle Ideation with Large
Language Models”. In: Proceedings of the 2023 CHI Conference on Human Factors
in Computing Systems (2023). url: https://api.semanticscholar.org/CorpusID:
258217880.

[41] Jacob W. Getzels and Mihaly Csikszentmihalyi. The Creative Vision: A Longitudinal
Study of Problem Finding in Art. New York: John Wiley & Sons, 1976. isbn: 0471014869.

[42] Pranab Sahoo et al. “A Survey of Prompt Engineering Methods in Large Language
Models for Different NLP Tasks”. In: arXiv preprint arXiv:2407.12994 (2024). url:
https://arxiv.org/abs/2407.12994.

[43] Pranab Sahoo et al. “A Systematic Survey of Prompt Engineering in Large Language
Models: Techniques and Applications”. In: arXiv preprint arXiv:2402.07927 (2024).
url: https://arxiv.org/abs/2402.07927.

[44] Reiichiro Nakano, Jacob Hilton, Suchir Balaji, et al. “WebGPT: Browser-assisted
Question Answering with Human Feedback”. In: arXiv preprint arXiv:2112.09332
(2021).

[45] Yĳia Shao et al. “Assisting in Writing Wikipedia-like Articles From Scratch with
Large Language Models”. In: Proceedings of the 2024 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies
(Volume 1: Long Papers). 2024, pp. 6252–6278.

285

https://api.semanticscholar.org/CorpusID:270678856
https://api.semanticscholar.org/CorpusID:270678856
https://api.semanticscholar.org/CorpusID:278063039
https://api.semanticscholar.org/CorpusID:278063039
https://api.semanticscholar.org/CorpusID:248002739
https://api.semanticscholar.org/CorpusID:248002739
https://api.semanticscholar.org/CorpusID:258217880
https://api.semanticscholar.org/CorpusID:258217880
https://arxiv.org/abs/2407.12994
https://arxiv.org/abs/2402.07927


Bibliography

[46] Rujun Han et al. “Deep Researcher with Test-Time Diffusion”. In: arXiv preprint
arXiv:2507.16075 (2025).

[47] Ann Yuan et al. “Wordcraft: story writing with large language models”. In: Proceed-
ings of the 27th International Conference on Intelligent User Interfaces. 2022, pp. 841–
852.

[48] Mina Lee, Percy Liang, and Qian Yang. “Coauthor: Designing a human-ai collabo-
rative writing dataset for exploring language model capabilities”. In: Proceedings of
the 2022 CHI conference on human factors in computing systems. 2022, pp. 1–19.

[49] Piotr Mirowski et al. “Co-Writing Screenplays and Theatre Scripts with Language
Models: An Evaluation by Industry Professionals”. In: arXiv preprint arXiv:2209.14958
(2022).

[50] Katy Ilonka Gero, Tao Long, and Lydia B Chilton. “Social dynamics of AI support
in creative writing”. In: Proceedings of the 2023 CHI conference on human factors in
computing systems. 2023, pp. 1–15.

[51] Tuhin Chakrabarty et al. “Creativity support in the age of large language models:
An empirical study involving emerging writers”. In: arXiv preprint arXiv:2309.12570
(2023).

[52] Joon Sung Park et al. “Generative agents: Interactive simulacra of human behavior”.
In: Proceedings of the 36th annual acm symposium on user interface software and technology.
2023, pp. 1–22.

[53] Guanzhi Wang et al. “Voyager: An open-ended embodied agent with large language
models”. In: arXiv preprint arXiv:2305.16291 (2023).

[54] Liwei Jiang et al. “Investigating machine moral judgement through the Delphi
experiment”. In: Nature Machine Intelligence 7.1 (2025), pp. 145–160.

[55] Caleb Ziems et al. “NormBank: A knowledge bank of situational social norms”. In:
arXiv preprint arXiv:2305.17008 (2023).

[56] Badr Alkhamissi et al. “Investigating Cultural Alignment of Large Language
Models”. In: Proceedings of the 62nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). 2024, pp. 12404–12422.

[57] Seungju Han et al. “Reading Books is Great, But Not if You Are Driving! Visually
Grounded Reasoning about Defeasible Commonsense Norms”. In: Proceedings
of the 2023 Conference on Empirical Methods in Natural Language Processing. 2023,
pp. 894–914.

286



Bibliography

[58] Sachita Nishal, Eric Lee, and Nicholas Diakopoulos. “De-jargonizing Science for
Journalists with GPT-4: A Pilot Study”. In: arXiv preprint arXiv:2410.12069 (2024).

[59] Joris Veerbeek and Nicholas Diakopoulos. “Using Generative Agents to Create Tip
Sheets for Investigative Data Reporting”. In: ().

[60] Jiho Shin et al. “Prompt Engineering or Fine Tuning: An Empirical Assessment
of Large Language Models in Automated Software Engineering Tasks”. In: CoRR
(2023).

[61] Boqi Chen, Fandi Yi, and Dániel Varró. “Prompting or fine-tuning? A comparative
study of large language models for taxonomy construction”. In: 2023 ACM/IEEE
International Conference on Model Driven Engineering Languages and Systems Companion
(MODELS-C). IEEE. 2023, pp. 588–596.

[62] Ive Botunac, Marĳa Brkić Bakarić, and Maja Matetić. “Comparing fine-tuning and
prompt engineering for multi-class classification in hospitality review analysis”. In:
Applied Sciences 14.14 (2024), p. 6254.

[63] Zezhong Wang et al. “Fine-tuning after Prompting: an Explainable Way for Classifi-
cation”. In: Proceedings of the 10th SIGHAN Workshop on Chinese Language Processing
(SIGHAN-10). 2024, pp. 133–142.

[64] John Schulman et al. “Proximal policy optimization algorithms”. In: arXiv preprint
arXiv:1707.06347 (2017).

[65] Rafael Rafailov et al. “Direct preference optimization: Your language model is
secretly a reward model”. In: Advances in neural information processing systems 36
(2023), pp. 53728–53741.

[66] Andriy Mnih and Karol Gregor. “Neural variational inference and learning in belief
networks”. In: International Conference on Machine Learning. PMLR. 2014, pp. 1791–
1799.

[67] Tao Lei, Regina Barzilay, and Tommi Jaakkola. “Rationalizing Neural Predictions”. In:
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing.
Ed. by Jian Su, Kevin Duh, and Xavier Carreras. Austin, Texas: Association for
Computational Linguistics, Nov. 2016, pp. 107–117. doi: 10.18653/v1/D16-1011.
url: https://aclanthology.org/D16-1011/.

[68] Zeqiu Wu et al. “Fine-grained human feedback gives better rewards for language
model training”. In: Advances in Neural Information Processing Systems 36 (2023),
pp. 59008–59033.

287

https://doi.org/10.18653/v1/D16-1011
https://aclanthology.org/D16-1011/


Bibliography

[69] Xiaobao Wu. “Sailing by the Stars: A Survey on Reward Models and Learning
Strategies for Learning from Rewards”. In: arXiv preprint arXiv:2505.02686 (2025).

[70] Shuhe Wang et al. “Reinforcement learning enhanced llms: A survey”. In: arXiv
preprint arXiv:2412.10400 (2024).

[71] Daya Guo et al. “Deepseek-r1: Incentivizing reasoning capability in llms via rein-
forcement learning”. In: arXiv preprint arXiv:2501.12948 (2025).

[72] Ishita Dasgupta et al. “Language models show human-like content effects on
reasoning tasks”. In: arXiv preprint arXiv:2207.07051 (2022).

[73] Qing Lyu et al. “Faithful chain-of-thought reasoning”. In: The 13th International Joint
Conference on Natural Language Processing and the 3rd Conference of the Asia-Pacific
Chapter of the Association for Computational Linguistics (ĲCNLP-AACL 2023). 2023.

[74] Samuel Gershman and Noah Goodman. “Amortized inference in probabilistic
reasoning”. In: Proceedings of the annual meeting of the cognitive science society. Vol. 36.
36. 2014.

[75] Noah D Goodman and Michael C Frank. “Pragmatic language interpretation as
probabilistic inference”. In: Trends in cognitive sciences 20.11 (2016), pp. 818–829.

[76] Sang Michael Xie et al. “An Explanation of In-context Learning as Implicit Bayesian
Inference”. In: International Conference on Learning Representations. 2022. url: https:
//openreview.net/forum?id=RdJVFCHjUMI.

[77] Miles Turpin et al. “Language models don’t always say what they think: Unfaithful
explanations in chain-of-thought prompting”. In: Advances in Neural Information
Processing Systems. Vol. 36. 2023, pp. 74952–74965.

[78] Tamera Lanham et al. “Measuring Faithfulness in Chain-of-Thought Reasoning”.
In: CoRR (2023).

[79] Huatong Song et al. “R1-Searcher: Incentivizing the Search Capability in LLMs via
Reinforcement Learning”. In: CoRR (2025).

[80] Mingyang Chen et al. “Learning to reason with search for llms via reinforcement
learning”. In: arXiv preprint arXiv:2503.19470 (2025).

[81] Yuxiang Zheng et al. “Deepresearcher: Scaling deep research via reinforcement
learning in real-world environments”. In: arXiv preprint arXiv:2504.03160 (2025).

[82] Zhepei Wei et al. “Webagent-r1: Training web agents via end-to-end multi-turn
reinforcement learning”. In: arXiv preprint arXiv:2505.16421 (2025).

288

https://openreview.net/forum?id=RdJVFCHjUMI
https://openreview.net/forum?id=RdJVFCHjUMI


Bibliography

[83] Ethan Hsu et al. “WebDS: An End-to-End Benchmark for Web-based Data Science”.
In: arXiv preprint arXiv:2508.01222 (2025).

[84] Nisan Stiennon et al. “Learning to summarize with human feedback”. In: Advances
in neural information processing systems 33 (2020), pp. 3008–3021.

[85] Alexander Gurung and Mirella Lapata. “Learning to reason for long-form story
generation”. In: arXiv preprint arXiv:2503.22828 (2025).

[86] Rafael Pardinas et al. “Leveraging human preferences to master poetry”. In: The
AAAI-23 Workshop on Creative AI Across Modalities. 2023.

[87] David J. Wood. How Children Think and Learn. Oxford: Basil Blackwell, 1988.

[88] Christine A Caldwell et al. “End state copying by humans (Homo sapiens): implica-
tions for a comparative perspective on cumulative culture.” In: Journal of Comparative
Psychology 126.2 (2012), p. 161.

[89] Lydia M Hopper et al. “Observational learning in chimpanzees and children studied
through ‘ghost’conditions”. In: Proceedings of the Royal Society B: Biological Sciences
275.1636 (2008), pp. 835–840.

[90] Christine A Caldwell and Ailsa E Millen. “Studying cumulative cultural evolution in
the laboratory”. In: Philosophical Transactions of the Royal Society B: Biological Sciences
363.1509 (2008), pp. 3529–3539.

[91] Christine A Caldwell and Ailsa E Millen. “Experimental models for testing hypothe-
ses about cumulative cultural evolution”. In: Evolution and Human Behavior 29.3
(2008), pp. 165–171.

[92] David G Jansson and Steven M Smith. “Design fixation”. In: Design studies 12.1
(1991), pp. 3–11.

[93] Ut Na Sio, Kenneth Kotovsky, and Jonathan Cagan. “Fixation or inspiration? A
meta-analytic review of the role of examples on design processes”. In: Design Studies
39 (2015), pp. 70–99.

[94] Nicolas Fay, Simon Garrod, and Leo Roberts. “The fitness and functionality of
culturally evolved communication systems”. In: Philosophical Transactions of the Royal
Society B: Biological Sciences 363.1509 (2008), pp. 3553–3561.

[95] Annette Barnes. Languages of Art: An Approach to a Theory of Symbols. 1971.

[96] Kendall L Walton. Mimesis as make-believe: On the foundations of the representational
arts. Harvard University Press, 1993.

289



Bibliography

[97] Tessa Verhoef. “The origins of duality of patterning in artificial whistled languages”.
In: Language and cognition 4.4 (2012), pp. 357–380.

[98] Nori Jacoby and Josh H McDermott. “Integer ratio priors on musical rhythm
revealed cross-culturally by iterated reproduction”. In: Current biology 27.3 (2017),
pp. 359–370.

[99] Bruno Latour. “Visualisation and cognition: Drawing things together”. In: AVANT.
Pismo Awangardy Filozoficzno-Naukowej 3 (2012), pp. 207–257.

[100] Steven Shapin and Simon Schaffer. Leviathan and the air-pump: Hobbes, Boyle, and the
experimental life. Princeton University Press, 2011.

[101] Bruno Latour, Jonas Salk, and Steve Woolgar. “Laboratory life: The construction of
scientific facts”. In: (2013).

[102] Michael Schudson. Discovering the news: A social history of American newspapers. Basic
books, 1981.

[103] Michael Schudson. The power of news. Harvard University Press, 1995.

[104] Michael Schudson. “The objectivity norm in American journalism”. In: Journalism
2.2 (2001), pp. 149–170.

[105] Michael Schudson. “The sociology of news production”. In: Media, Culture & Society
11.3 (1989), pp. 263–282.

[106] Oscar Gandy. “Beyond agenda-setting”. In: Agenda setting. Routledge, 2016, pp. 263–
275.

[107] Raymond A Harder, Julie Sevenans, and Peter Van Aelst. “Intermedia agenda setting
in the social media age: How traditional players dominate the news agenda in
election times”. In: The international journal of press/politics 22.3 (2017), pp. 275–293.

[108] Michael Polanyi. “The tacit dimension”. In: Knowledge in organisations. Routledge,
2009, pp. 135–146.

[109] Harry Collins. Tacit and explicit knowledge. University of Chicago press, 2019.

[110] Gilbert Ryle and Julia Tanney. The concept of mind. Routledge, 2009.

[111] Lucille Alice Suchman. Plans and situated actions: The problem of human-machine
communication. Cambridge university press, 1987.

290



Bibliography

[112] Donald A Schön. The reflective practitioner: How professionals think in action. Routledge,
2017.

[113] Jean Lave and Etienne Wenger. Situated learning: Legitimate peripheral participation.
Cambridge university press, 1991.

[114] Harry Collins and Robert Evans. Rethinking expertise. University of Chicago press,
2019.

[115] Hubert Dreyfus and Stuart E Dreyfus. Mind over machine. Simon and Schuster, 1986.

[116] R Thomas McCoy et al. “Embers of autoregression show how large language models
are shaped by the problem they are trained to solve”. In: Proceedings of the National
Academy of Sciences 121.41 (2024), e2322420121.

[117] Michael A.K. Halliday and Ruqaiya Hasan. “Cohesion in English”. In: 1976. url:
https://api.semanticscholar.org/CorpusID:62192469.

[118] Jerry R. Hobbs. “Coherence and Coreference”. In: Cogn. Sci. 3 (1979), pp. 67–90. url:
https://api.semanticscholar.org/CorpusID:45706253.

[119] Rashmi Prasad, Bonnie Webber, and Aravind Joshi. “The Penn Discourse Treebank:
An annotated corpus of discourse relations”. In: Handbook of linguistic annotation.
Springer, 2017, pp. 1197–1217.

[120] Bonnie Webber et al. “The penn discourse treebank 3.0 annotation manual”. In:
Philadelphia, University of Pennsylvania 35 (2019), p. 108.

[121] Lynn Carlson, Mary Ellen Okurowski, and Daniel Marcu. RST discourse treebank.
Linguistic Data Consortium, University of Pennsylvania, 2002.

[122] William C. Mann and Sandra A. Thompson. “Rhetorical Structure Theory: Toward
a functional theory of text organization”. In: Text & Talk 8 (1988), pp. 243–281. url:
https://api.semanticscholar.org/CorpusID:60514661.

[123] Yan Huang, ed. The Oxford Handbook of Pragmatics. Oxford: Oxford University Press,
2017.

[124] Alex Lascarides and Nicholas Asher. “Segmented Discourse Representation The-
ory: Dynamic Semantics With Discourse Structure”. In: 2008. url: https://api.
semanticscholar.org/CorpusID:8730950.

[125] Teun A Van Dĳk. “Discourse analysis: Its development and application to the
structure of news”. In: Journal of communication 33.2 (1983), pp. 20–43.

291

https://api.semanticscholar.org/CorpusID:62192469
https://api.semanticscholar.org/CorpusID:45706253
https://api.semanticscholar.org/CorpusID:60514661
https://api.semanticscholar.org/CorpusID:8730950
https://api.semanticscholar.org/CorpusID:8730950


Bibliography

[126] Teun A Van Dĳk. News as discourse. Routledge, 1988.

[127] Xiangci Li, Gully Burns, and Nanyun Peng. “Scientific Discourse Tagging for
Evidence Extraction”. In: Proceedings of the 16th Conference of the European Chapter of
the Association for Computational Linguistics: Main Volume. Online: Association for
Computational Linguistics, Apr. 2021, pp. 2550–2562. doi: 10.18653/v1/2021.eacl-
main.218. url: https://aclanthology.org/2021.eacl-main.218.

[128] Khalid Al-Khatib et al. “A News Editorial Corpus for Mining Argumentation
Strategies”. In: 26th International Conference on Computational Linguistics (COLING
2016). Ed. by Yuji Matsumoto and Rashmi Prasad. Association for Computational
Linguistics, Dec. 2016, pp. 3433–3443. url: https://aclanthology.org/C16-1324/.

[129] Alexander Spangher et al. “LegalDiscourse: Interpreting when laws apply and to
whom”. In: Proceedings of the 2024 Conference of NAACL-HLT. 2024, pp. 8528–8551.

[130] Prafulla Kumar Choubey et al. “Discourse as a function of event: Profiling discourse
structure in news articles around the main event”. In: Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics. Online: Association for
Computational Linguistics, July 2020, pp. 5374–5386. doi: 10.18653/v1/2020.acl-
main.478. url: https://www.aclweb.org/anthology/2020.acl-main.478.

[131] L. S. Vygotsky. Thinking and Speech. Available online at Marxists Internet Archive.
1934. url: https://www.marxists.org/archive/vygotsky/works/words/Thinking-
and-Speech.pdf.

[132] Peter Carruthers. “The cognitive functions of language”. In: Behavioral and brain
sciences 25.6 (2002), pp. 657–674.

[133] Linda S. Flower and J. R. Hayes. “A Cognitive Process Theory of Writing”. In:
College Composition & Communication (1981). url: https://api.semanticscholar.
org/CorpusID:18484126.

[134] Zae Myung Kim et al. “Align to Structure: Aligning Large Language Models with
Structural Information”. In: arXiv preprint arXiv:2504.03622 (2025).

[135] Barbara J Grosz and Candace L Sidner. “Attention, intentions, and the structure of
discourse”. In: Computational linguistics 12.3 (1986), pp. 175–204.

[136] Barbara J. Grosz, Aravind K. Joshi, and Scott Weinstein. “Centering: A framework
for modeling the local coherence of discourse”. In: Computational Linguistics 21.2
(1995), pp. 203–225.

[137] Willem J. M. Levelt. Speaking: From Intention to Articulation. Cambridge, MA: MIT
Press, 1989.

292

https://doi.org/10.18653/v1/2021.eacl-main.218
https://doi.org/10.18653/v1/2021.eacl-main.218
https://aclanthology.org/2021.eacl-main.218
https://aclanthology.org/C16-1324/
https://doi.org/10.18653/v1/2020.acl-main.478
https://doi.org/10.18653/v1/2020.acl-main.478
https://www.aclweb.org/anthology/2020.acl-main.478
https://www.marxists.org/archive/vygotsky/works/words/Thinking-and-Speech.pdf
https://www.marxists.org/archive/vygotsky/works/words/Thinking-and-Speech.pdf
https://api.semanticscholar.org/CorpusID:18484126
https://api.semanticscholar.org/CorpusID:18484126


Bibliography

[138] Willem J. M. Levelt. “Producing spoken language: A blueprint of the speaker”. In:
The Neurocognition of Language. Ed. by Colin M. Brown and Peter Hagoort. Oxford:
Oxford University Press, 1999, pp. 83–122.

[139] Zenzi M. Griffin and Kathryn Bock. “What the Eyes Say about Speaking”. In:
Psychological Science 11.4 (2000), pp. 274–279. doi: 10.1111/1467-9280.00255.

[140] J. Kathryn Bock. “Syntactic persistence in language production”. In: Cognitive
Psychology 18.3 (1986), pp. 355–387. doi: 10.1016/0010-0285(86)90004-6.

[141] J. Kathryn Bock and Richard K. Warren. “Conceptual accessibility and syntactic
structure in sentence formulation”. In: Cognition 21.1 (1985), pp. 47–67. doi: 10.
1016/0010-0277(85)90023-X.

[142] Fernanda Ferreira and Benjamin Swets. “How incremental is language production?
Evidence from the production of utterances requiring the computation of arithmetic
sums”. In: Journal of Memory and Language 46.1 (2002), pp. 57–84. doi: 10.1006/jmla.
2001.2797.

[143] T Jaeger and Roger Levy. “Speakers optimize information density through syntactic
reduction”. In: Advances in neural information processing systems 19 (2006).

[144] T. Florian Jaeger. “Redundancy and reduction: Speakers manage syntactic infor-
mation density”. In: Cognitive Psychology 61.1 (2010), pp. 23–62. doi: 10.1016/j.
cogpsych.2010.02.002.

[145] Alexander Spangher et al. “Multitask semi-supervised learning for class-imbalanced
discourse classification”. In: Proceedings of the 2021 Conference on Empirical Methods
in Natural Language Processing. Online and Punta Cana, Dominican Republic: Asso-
ciation for Computational Linguistics, Nov. 2021, pp. 498–517. doi: 10.18653/v1/
2021.emnlp-main.40. url: https://aclanthology.org/2021.emnlp-main.40.

[146] Chris L Baker, Rebecca Saxe, and Joshua B Tenenbaum. “Action understanding as
inverse planning”. In: Cognition 113.3 (2009), pp. 329–349.

[147] Alec Radford et al. “Language models are unsupervised multitask learners”. In:
OpenAI blog 1.8 (2019), p. 9.

[148] Alex Warstadt et al. “BLiMP: The benchmark of linguistic minimal pairs for English”.
In: Transactions of the Association for Computational Linguistics 8 (2020), pp. 377–392.

[149] Andrew Whiten et al. “Emulation, imitation, over-imitation and the scope of culture
for child and chimpanzee”. In: Philosophical Transactions of the Royal Society B:
Biological Sciences 364 (2009), pp. 2417–2428. url: https://api.semanticscholar.
org/CorpusID:15697790.

293

https://doi.org/10.1111/1467-9280.00255
https://doi.org/10.1016/0010-0285(86)90004-6
https://doi.org/10.1016/0010-0277(85)90023-X
https://doi.org/10.1016/0010-0277(85)90023-X
https://doi.org/10.1006/jmla.2001.2797
https://doi.org/10.1006/jmla.2001.2797
https://doi.org/10.1016/j.cogpsych.2010.02.002
https://doi.org/10.1016/j.cogpsych.2010.02.002
https://doi.org/10.18653/v1/2021.emnlp-main.40
https://doi.org/10.18653/v1/2021.emnlp-main.40
https://aclanthology.org/2021.emnlp-main.40
https://api.semanticscholar.org/CorpusID:15697790
https://api.semanticscholar.org/CorpusID:15697790


Bibliography

[150] Dongyeop Kang and Eduard Hovy. “Plan ahead: Self-Supervised Text Planning
for Paragraph Completion Task”. In: Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP). 2020, pp. 6533–6543.

[151] Jonathan Evans. “Dual-processing accounts of reasoning, judgment, and social
cognition.” In: Annual review of psychology 59 (2008), pp. 255–78. url: https://api.
semanticscholar.org/CorpusID:12246493.

[152] Stephanie O’Donohoe and Adam Ferrier. “Thinking, Fast and Slow”. In: International
Journal of Advertising 31 (2012), pp. 445–446. url: https://api.semanticscholar.
org/CorpusID:149191349.

[153] Jonathan Evans and Keith Frankish. “In two minds: Dual processes and beyond.”
In: 2009. url: https://api.semanticscholar.org/CorpusID:142629976.

[154] Violet Xiang et al. “Towards system 2 reasoning in llms: Learning how to think with
meta chain-of-thought”. In: arXiv preprint arXiv:2501.04682 (2025).

[155] Yoshua Bengio, Yann LeCun, and Geoffrey E. Hinton. “Deep learning for AI”. In:
Communications of the ACM 64 (2021), pp. 58–65. url: https://api.semanticscholar.
org/CorpusID:235495130.

[156] Zhong-Zhi Li et al. “From system 1 to system 2: A survey of reasoning large language
models”. In: arXiv preprint arXiv:2502.17419 (2025).

[157] A. Bandura. “Social learning theory”. In: Canadian Journal of Sociology-cahiers Canadi-
ens De Sociologie 2 (1977), p. 321. url: https://api.semanticscholar.org/CorpusID:
227319622.

[158] Andrew N. Meltzoff. “’Like me’: a foundation for social cognition.” In: Developmental
science 10 1 (2007), pp. 126–34. url: https://api.semanticscholar.org/CorpusID:
7157186.

[159] Cristine H. Legare and Mark Nielsen. “Imitation and Innovation: The Dual Engines
of Cultural Learning”. In: Trends in Cognitive Sciences 19 (2015), pp. 688–699. url:
https://api.semanticscholar.org/CorpusID:3664635.

[160] Harriet Over and Malinda Carpenter. “The social side of imitation”. In: Child
Development Perspectives 7 (2013), pp. 6–11. url: https://api.semanticscholar.
org/CorpusID:145356998.

[161] Pieter Abbeel and Andrew Y Ng. “Apprenticeship learning via inverse reinforcement
learning”. In: Proceedings of the twenty-first international conference on Machine learning.
2004, p. 1.

294

https://api.semanticscholar.org/CorpusID:12246493
https://api.semanticscholar.org/CorpusID:12246493
https://api.semanticscholar.org/CorpusID:149191349
https://api.semanticscholar.org/CorpusID:149191349
https://api.semanticscholar.org/CorpusID:142629976
https://api.semanticscholar.org/CorpusID:235495130
https://api.semanticscholar.org/CorpusID:235495130
https://api.semanticscholar.org/CorpusID:227319622
https://api.semanticscholar.org/CorpusID:227319622
https://api.semanticscholar.org/CorpusID:7157186
https://api.semanticscholar.org/CorpusID:7157186
https://api.semanticscholar.org/CorpusID:3664635
https://api.semanticscholar.org/CorpusID:145356998
https://api.semanticscholar.org/CorpusID:145356998


Bibliography

[162] Andrew Y Ng, Stuart Russell, et al. “Algorithms for inverse reinforcement learning.”
In: Icml. Vol. 1. 2. 2000, p. 2.

[163] Faraz Torabi, Garrett Warnell, and Peter Stone. “Behavioral Cloning from Observa-
tion”. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence
(ĲCAI). 2018.

[164] Faraz Torabi, Garrett Warnell, and Peter Stone. “Generative Adversarial Imitation
from Observation”. In: arXiv preprint arXiv:1807.06158 (2018).

[165] Henry A. Kautz and James F. Allen. “Generalized Plan Recognition”. In: Proceedings
of the 5th National Conference on Artificial Intelligence (AAAI). 1986.

[166] Miquel Ramírez and Hector Geffner. “Plan Recognition as Planning”. In: Proceedings
of the 21st International Joint Conference on Artificial Intelligence (ĲCAI). 2009, pp. 1778–
1783.

[167] Tom Schaul et al. “Universal Value Function Approximators”. In: Proceedings of the
32nd International Conference on Machine Learning (ICML). 2015.

[168] Marcin Andrychowicz et al. “Hindsight Experience Replay”. In: Advances in Neural
Information Processing Systems (NeurIPS). 2017.

[169] Emmanuel Bengio et al. “Flow Network based Generative Models for Non-Iterative
Diverse Candidate Generation”. In: Advances in Neural Information Processing Systems
(NeurIPS). 2021.

[170] Nikolay Malkin et al. “Trajectory Balance: Improved Credit Assignment in GFlowNets”.
In: Advances in Neural Information Processing Systems (NeurIPS). 2022.

[171] Allen Newell and Herbert A. Simon. Human Problem Solving. Englewood Cliffs, NJ:
Prentice–Hall, 1972.

[172] Richard E. Fikes and Nils J. Nilsson. “STRIPS: A New Approach to the Application
of Theorem Proving to Problem Solving”. In: Artificial Intelligence 2.3–4 (1971),
pp. 189–208.

[173] Gabriel Peyré and Marco Cuturi. Computational Optimal Transport. Now Publishers,
2019.

[174] Christian Léonard. “A Survey of the Schrödinger Problem and Some of its Connec-
tions with Optimal Transport”. In: Discrete and Continuous Dynamical Systems - Series
A 34.4 (2014), pp. 1533–1574.

295



Bibliography

[175] Diederik P Kingma and Max Welling. “Auto-encoding variational {Bayes}”. In: Int.
Conf. on Learning Representations.

[176] David M Blei, Alp Kucukelbir, and Jon D McAuliffe. “Variational inference: A
review for statisticians”. In: Journal of the American statistical Association 112.518
(2017), pp. 859–877.

[177] Yann LeCun, Sumit Chopra, and Raia Hadsell. “A Tutorial on Energy-Based
Learning”. In: Predicting Structured Data. MIT Press, 2006.

[178] Yang Song et al. “Score-Based Generative Modeling through Stochastic Differential
Equations”. In: Proceedings of the 9th International Conference on Learning Representa-
tions (ICLR). 2021.

[179] Sergey Levine. “Reinforcement Learning and Control as Probabilistic Inference:
Tutorial and Review”. In: arXiv preprint arXiv:1805.00909 (2018).

[180] Emanuel Todorov. “Linearly-Solvable Markov Decision Problems”. In: Advances in
Neural Information Processing Systems (NeurIPS). 2006.

[181] Brian D. Ziebart et al. “Maximum Entropy Inverse Reinforcement Learning”. In:
Proceedings of the 23rd AAAI Conference on Artificial Intelligence (AAAI). 2008.

[182] Chao Yang et al. “Imitation Learning from Observations by Minimizing Inverse
Dynamics Disagreement”. In: Advances in Neural Information Processing Systems
(NeurIPS). 2019.

[183] Seonghyeon Ye et al. “Latent Action Pretraining from Videos”. In: The Thirteenth
International Conference on Learning Representations.

[184] Judea Pearl. Heuristics: Intelligent Search Strategies for Computer Problem Solving.
Reading, MA: Addison–Wesley, 1984.

[185] Richard E. Korf. “Depth-first Iterative-deepening: An Optimal Admissible Tree
Search”. In: Artificial Intelligence 27.1 (1985), pp. 97–109.

[186] Chong Wang and David M Blei. “Collaborative topic modeling for recommending
scientific articles”. In: Proceedings of the 17th ACM SIGKDD international conference on
Knowledge discovery and data mining. 2011, pp. 448–456.

[187] Alexander Spangher. “Building the next New York Times recommendation engine”.
In: The New York Times (2015), pp. 08–26.

296



Bibliography

[188] Prem Gopalan, Laurent Charlin, and David M Blei. “Content-based recommenda-
tions with Poisson factorization”. In: Advances in neural information processing systems
27 (2014).

[189] Arthur P. Dempster, Nan M. Laird, and Donald B. Rubin. “Maximum Likelihood
from Incomplete Data via the EM Algorithm”. In: Journal of the Royal Statistical
Society: Series B (Methodological) 39.1 (1977), pp. 1–38.

[190] Carl Doersch. “Tutorial on variational autoencoders”. In: arXiv preprint arXiv:1606.05908
(2016).

[191] Lawrence R. Rabiner. “A Tutorial on Hidden Markov Models and Selected Ap-
plications in Speech Recognition”. In: Proceedings of the IEEE 77.2 (1989), pp. 257–
286.

[192] K. Lari and S. J. Young. “The Estimation of Stochastic Context-Free Grammars
Using the Inside–Outside Algorithm”. In: Computer Speech & Language 4.1 (1990),
pp. 35–56.

[193] Geoffrey E. Hinton et al. “The Wake–Sleep Algorithm for Unsupervised Neural
Networks”. In: Science 268.5214 (1995), pp. 1158–1161.

[194] Hagai Attias. “Planning by Probabilistic Inference”. In: Proceedings of the 9th Interna-
tional Workshop on Artificial Intelligence and Statistics (AISTATS). 2003.

[195] Marc Toussaint. “Robot Trajectory Optimization Using Approximate Inference”. In:
Proceedings of the 26th International Conference on Machine Learning (ICML). 2009.

[196] H. J. Kappen. “Linear Theory for Control of Nonlinear Stochastic Systems”. In:
Physical Review Letters 95.20 (2005), p. 200201.

[197] Will Grathwohl et al. “Your Classifier is Secretly an Energy Based Model”. In:
Proceedings of the 8th International Conference on Learning Representations (ICLR). 2020.

[198] Kevin Ellis et al. “DreamCoder: Bootstrapping Inductive Program Synthesis with
Wake–Sleep Library Learning”. In: Proceedings of the 42nd ACM SIGPLAN Inter-
national Conference on Programming Language Design and Implementation (PLDI).
2021.

[199] Brenden M. Lake, Ruslan Salakhutdinov, and Joshua B. Tenenbaum. “Human-Level
Concept Learning Through Probabilistic Program Induction”. In: Science 350.6266
(2015), pp. 1332–1338.

[200] Michael Janner et al. “Planning with Diffusion for Flexible Behavior Synthesis”. In:
Proceedings of the 39th International Conference on Machine Learning (ICML). 2022.

297



Bibliography

[201] Anurag Ajay et al. “Is Conditional Generative Modeling all you Need for Decision
Making?” In: Proceedings of the 11th International Conference on Learning Representations
(ICLR). 2023.

[202] Alexander Spangher et al. “Identifying Informational Sources in News Articles”. In:
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing.
Ed. by Houda Bouamor, Juan Pino, and Kalika Bali. Singapore: Association for
Computational Linguistics, Dec. 2023, pp. 3626–3639. doi: 10.18653/v1/2023.emnlp-
main.221. url: https://aclanthology.org/2023.emnlp-main.221.

[203] Lydia M Hopper, Vania de la Luz, and Andrew Whiten. “‘Ghost’ experiments
and the dissection of social learning in humans and animals”. In: Philosophical
Transactions of the Royal Society B: Biological Sciences 365.1551 (2010), pp. 3635–3640.
doi: 10.1098/rstb.2010.0140.

[204] Sarah Cohen, James T. Hamilton, and Fred Turner. “Computational journalism”. In:
Communications of the ACM 54 (2011), pp. 66–71. url: https://api.semanticscholar.
org/CorpusID:30295912.

[205] Francesco Marconi and Alex Siegman. A day in the life of a journalist in 2027: Reporting
meets AI. Apr. 11, 2017. url: https://www.cjr.org/innovations/artificial-
intelligence-journalism.php (visited on 08/29/2025).

[206] J Gatlung and Mari Holmboe Ruge. “The structure of foreign news”. In: Journal of
Peace Research 2.1 (1965), pp. 64–91.

[207] Horst Po
ttker. “News and its communicative quality: the inverted pyramid—when and why
did it appear?” In: Journalism Studies 4.4 (2003), pp. 501–511.

[208] Phyllis Kaniss. Making local news. University of Chicago Press, 1991.

[209] David L Hamilton and Roger D Fallot. “Information salience as a weighting factor
in impression formation.” In: Journal of Personality and Social Psychology 30.4 (1974),
p. 444.

[210] Sarah Cohen, James T Hamilton, and Fred Turner. “Computational journalism”. In:
Communications of the ACM 54.10 (2011), pp. 66–71.

[211] Alexander Spangher et al. “Tracking the Newsworthiness of Public Documents”. In:
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers). Ed. by Lun-Wei Ku, Andre Martins, and Vivek Srikumar.
Bangkok, Thailand: Association for Computational Linguistics, Aug. 2024, pp. 14150–
14168. doi: 10.18653/v1/2024.acl-long.763. url: https://aclanthology.org/
2024.acl-long.763/.

298

https://doi.org/10.18653/v1/2023.emnlp-main.221
https://doi.org/10.18653/v1/2023.emnlp-main.221
https://aclanthology.org/2023.emnlp-main.221
https://doi.org/10.1098/rstb.2010.0140
https://api.semanticscholar.org/CorpusID:30295912
https://api.semanticscholar.org/CorpusID:30295912
https://www.cjr.org/innovations/artificial-intelligence-journalism.php
https://www.cjr.org/innovations/artificial-intelligence-journalism.php
https://doi.org/10.18653/v1/2024.acl-long.763
https://aclanthology.org/2024.acl-long.763/
https://aclanthology.org/2024.acl-long.763/


Bibliography

[212] Alexander Spangher et al. “NewsHomepages: Homepage Layouts Capture Infor-
mation Prioritization Decisions”. In: Proceedings of the 2025 Conference on Empirical
Methods in Natural Language Processing. Association for Computational Linguistics,
2025. url: https://arxiv.org/abs/2501.00004.

[213] Jonathan Spencer et al. “Feedback in imitation learning: The three regimes of
covariate shift”. In: arXiv preprint arXiv:2102.02872 (2021).

[214] Pim De Haan, Dinesh Jayaraman, and Sergey Levine. “Causal confusion in imitation
learning”. In: Advances in neural information processing systems 32 (2019).

[215] Suneel Belkhale, Yuchen Cui, and Dorsa Sadigh. “Data quality in imitation learning”.
In: Advances in neural information processing systems 36 (2023), pp. 80375–80395.

[216] Naoki Shibata, Yuya Kajikawa, and Ichiro Sakata. “Link prediction in citation
networks”. In: Journal of the American society for information science and technology 63.1
(2012), pp. 78–85.

[217] Amit Bagga and Breck Baldwin. “Cross-document event coreference: Annotations,
experiments, and observations”. In: Coreference and Its Applications. 1999.

[218] Lisa Getoor et al. “Learning probabilistic models of link structure”. In: Journal of
Machine Learning Research 3.Dec (2002), pp. 679–707.

[219] Jason Wei et al. “Chain of thought prompting elicits reasoning in large language
models”. In: arXiv preprint arXiv:2201.11903 35 (2022), pp. 24824–24837.

[220] Juan Ramos et al. “Using tf-idf to determine word relevance in document queries”.
In: Proceedings of the first instructional conference on machine learning. Vol. 242. 1.
Citeseer. 2003, pp. 29–48.

[221] Nils Reimers and Iryna Gurevych. “Sentence-bert: Sentence embeddings using
siamese bert-networks”. In: arXiv preprint arXiv:1908.10084 (2019), pp. 3982–3992.

[222] OpenAI. Introducing text and code embeddings. https : / / openai . com / index /
introducing-text-and-code-embeddings/. Accessed: 2025-08-19. Jan. 2022.

[223] Vladimir Karpukhin et al. “Dense passage retrieval for open-domain question
answering”. In: arXiv preprint arXiv:2004.04906 (2020).

[224] Stephen Robertson, Hugo Zaragoza, et al. “The probabilistic relevance framework:
BM25 and beyond”. In: Foundations and Trends® in Information Retrieval 3.4 (2009),
pp. 333–389.

299

https://arxiv.org/abs/2501.00004
https://openai.com/index/introducing-text-and-code-embeddings/
https://openai.com/index/introducing-text-and-code-embeddings/


Bibliography

[225] Nicholas Diakopoulos, Mor Naaman, and Funda Kivran-Swaine. “Diamonds in
the rough: Social media visual analytics for journalistic inquiry”. In: 2010 IEEE
Symposium on Visual Analytics Science and Technology. IEEE. 2010, pp. 115–122.

[226] Jian Zhao et al. “# FluxFlow: Visual analysis of anomalous information spreading
on social media”. In: IEEE transactions on visualization and computer graphics 20.12
(2014), pp. 1773–1782.

[227] Max Bain et al. “WhisperX: Time-Accurate Speech Transcription of Long-Form
Audio”. In: INTERSPEECH 2023 (2023).

[228] Rodrigo Uribe and Barrie Gunter. “AreSensational’News Stories More Likely to
Trigger Viewers’ Emotions than Non-Sensational News Stories? A Content Analysis
of British TV News”. In: European journal of communication 22.2 (2007), pp. 207–228.

[229] Pang Wei Koh et al. “Concept bottleneck models”. In: International conference on
machine learning. PMLR. 2020, pp. 5338–5348.

[230] Kevin G. Barnhurst and John Nerone. The Form of News: A History. Guilford Press,
2001.

[231] Nikki Usher. Making news at the New York times. University of Michigan Press, 2014.

[232] Alexander Spangher, Nanyun Peng, and Emilio Ferrara. “Modeling “Newsworthi-
ness” for Lead-Generation Across Corpora”. In: cj2020 (2020).

[233] Stephanie Hays. “An Analysis of Design Components of Award-winning Newspaper
Pages”. In: Elon Journal of Undergraduate Research in Communications 9.2 (2018), pp. 44–
63.

[234] Margaret Sullivan. “The End of the Page One Meeting: Making Way for the Reader
in Choosing the News”. In: The New York Times (Mar. 2016). https://publiceditor.
blogs.nytimes.com/2016/03/16/the-end-of-the-page-one-meeting-making-
way-for-the-reader-in-choosing-the-news/.

[235] Jakob Nielsen. F-Shaped Pattern For Reading Web Content. https://www.nngroup.com/
articles/f-shaped-pattern-reading-web-content/. Accessed: 2023-10-06. 2006.

[236] Hans-Jürgen Bucher and Peter Schumacher. “The relevance of attention for selecting
news content. An eye-tracking study on attention patterns in the reception of print
and online media”. In: (2006).

[237] Mario R. García. Contemporary Newspaper Design: Shaping the News in the Digital Age.
Prentice Hall, 1987.

300

https://publiceditor.blogs.nytimes.com/2016/03/16/the-end-of-the-page-one-meeting-making-way-for-the-reader-in-choosing-the-news/
https://publiceditor.blogs.nytimes.com/2016/03/16/the-end-of-the-page-one-meeting-making-way-for-the-reader-in-choosing-the-news/
https://publiceditor.blogs.nytimes.com/2016/03/16/the-end-of-the-page-one-meeting-making-way-for-the-reader-in-choosing-the-news/
https://www.nngroup.com/articles/f-shaped-pattern-reading-web-content/
https://www.nngroup.com/articles/f-shaped-pattern-reading-web-content/


Bibliography

[238] Dolf Zillmann, Silvia Knobloch, and Zhao Yu. “Effects of photographs on the
selective reading of news reports”. In: Media Psychology 3.4 (2001), pp. 301–324.

[239] George A Miller. “The magical number seven, plus or minus two: Some limits on
our capacity for processing information.” In: Psychological review 63.2 (1956), p. 81.

[240] Mark Boukes, Natalie P Jones, and Rens Vliegenthart. “Newsworthiness and story
prominence: How the presence of news factors relates to upfront position and
length of news stories”. In: Journalism 23.1 (2022), pp. 98–116.

[241] Ralph Allan Bradley and Milton E Terry. “Rank analysis of incomplete block designs:
I. the method of paired comparisons”. In: Biometrika 39.3/4 (1952), pp. 324–345.

[242] Louis L Thurstone. “A law of comparative judgment”. In: Scaling. Routledge, 2017,
pp. 81–92.

[243] LL Thurstone. “A law of comparative judgment”. In: Psychological Review 34.4 (1927).

[244] Guy Bergstrom. Understanding the Newspaper News Cycle. Accessed: 2025-05-19. 2019.
url: https://www.liveabout.com/understanding-the-news-cycle-2295933.

[245] Zejiang Shen et al. “LayoutParser: A Unified Toolkit for Deep Learning Based
Document Image Analysis”. In: Proceedings of the 27th ACM SIGKDD Conference on
Knowledge Discovery & Data Mining. ACM. 2021, pp. 4528–4538.

[246] Minghao Li et al. “DocBank: A Benchmark Dataset for Document Layout Analysis”.
In: Proceedings of the 28th International Conference on Computational Linguistics. 2020,
pp. 949–960.

[247] Xiaojie Zhong, Jianbin Tang, and Antonio Jimeno Yepes. “PubLayNet: largest dataset
ever for document layout analysis”. In: 2019 International Conference on Document
Analysis and Recognition (ICDAR). IEEE. 2019, pp. 1015–1022.

[248] Massih-Reza Amini et al. “Self-training: A survey”. In: arXiv preprint arXiv:2202.12040
(2022).

[249] Joseph Redmon and Ali Farhadi. “YOLOv3: An Incremental Improvement”. In:
arXiv (2018).

[250] Yuxin Wu et al. Detectron2. https://github.com/facebookresearch/detectron2.
2019.

[251] Edward R. Tufte. Envisioning Information. Graphics Press, 1990.

301

https://www.liveabout.com/understanding-the-news-cycle-2295933
https://github.com/facebookresearch/detectron2


Bibliography

[252] Matthew J. Salganik, Peter S. Dodds, and Duncan J. Watts. “Experimental study of
inequality and unpredictability in an artificial cultural market”. In: Science 311.5762
(2006), pp. 854–856.

[253] Christin Angèle. “Metrics at work: Journalism and the contested meaning of
algorithms”. In: (2020).

[254] Robin L Plackett. “The analysis of permutations”. In: Journal of the Royal Statistical
Society Series C: Applied Statistics 24.2 (1975), pp. 193–202.

[255] Gerard Debreu. Individual choice behavior: A theoretical analysis. 1960.

[256] Alan Lambert and Julie Brock. “Layout complexity and visitors’ attention on web
pages: An eye-tracking study”. In: Journal of Digital Information 6.2 (2005).

[257] Jakob Nielsen and Kara Pernice. Eyetracking Web Usability. New Riders, 2009.

[258] Sourab Mangrulkar et al. PEFT: State-of-the-art Parameter-Efficient Fine-Tuning methods.
https://github.com/huggingface/peft. 2022.

[259] Matthew Gentzkow and Jesse M Shapiro. “What drives media slant? Evidence from
US daily newspapers”. In: Econometrica 78.1 (2010), pp. 35–71.

[260] Sonal Sannigrahi, Josef Van Genabith, and Cristina España-Bonet. “Are the best
multilingual document embeddings simply based on sentence embeddings?” In:
arXiv preprint arXiv:2304.14796 (2023).

[261] Zhilin Yang et al. “HotpotQA: A dataset for diverse, explainable multi-hop question
answering”. In: arXiv preprint arXiv:1809.09600 (2018).

[262] Devendra Singh et al. “End-to-end training of multi-document reader and retriever
for open-domain question answering”. In: Advances in Neural Information Processing
Systems 34 (2021), pp. 25968–25981.

[263] CDP Institute. Knowledge Workers Lose 30% of Time Looking for Data: Forrester Study.
https://www.cdpinstitute.org/news/knowledge-workers-lose-30-of-time-
looking-for-data-forrester-study/. Accessed: 2025-08-20. Jan. 2023.

[264] Signe Ivask, Heleri All, and Kairi Janson. “Time-efficient and time-consuming
practices among journalists in communicating with the sources”. In: Catalan Journal
of Communication & Cultural Studies 9.1 (2017), pp. 25–41.

[265] Zhang-Wei Hong et al. “Curiosity-driven Red-teaming for Large Language Models”.
In: The Twelfth International Conference on Learning Representations.

302

https://github.com/huggingface/peft
https://www.cdpinstitute.org/news/knowledge-workers-lose-30-of-time-looking-for-data-forrester-study/
https://www.cdpinstitute.org/news/knowledge-workers-lose-30-of-time-looking-for-data-forrester-study/


Bibliography

[266] Sahithya Ravi et al. “Small But Funny: A Feedback-Driven Approach to Humor Dis-
tillation”. In: Proceedings of the 62nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). 2024, pp. 13078–13090.

[267] Guangxuan Xu et al. “EnDex: Evaluation of Dialogue Engagingness at Scale”. In:
Findings of the Association for Computational Linguistics: EMNLP 2022. 2022, pp. 4884–
4893.

[268] Chris Buckley and Ellen M Voorhees. “Retrieval evaluation with incomplete in-
formation”. In: Proceedings of the 27th annual international ACM SIGIR conference on
Research and development in information retrieval. 2004, pp. 25–32.

[269] Doina Precup, Richard S. Sutton, and Satinder Singh. “Eligibility Traces for Off-
Policy Policy Evaluation”. In: International Conference on Machine Learning. 2000. url:
https://api.semanticscholar.org/CorpusID:1153355.

[270] Philip Thomas and Emma Brunskill. “Data-Efficient Off-Policy Policy Evaluation
for Reinforcement Learning”. In: Proceedings of The 33rd International Conference on
Machine Learning. Ed. by Maria Florina Balcan and Kilian Q. Weinberger. Vol. 48.
Proceedings of Machine Learning Research. New York, New York, USA: PMLR, 20–
22 Jun 2016, pp. 2139–2148. url: https://proceedings.mlr.press/v48/thomasa16.
html.

[271] Scott Fujimoto, David Meger, and Doina Precup. “Off-policy deep reinforcement
learning without exploration”. In: International conference on machine learning. PMLR.
2019, pp. 2052–2062.

[272] Aviral Kumar et al. “Conservative q-learning for offline reinforcement learning”. In:
Advances in neural information processing systems 33 (2020), pp. 1179–1191.

[273] Alexander Spangher et al. “Do llms plan like human writers? comparing journalist
coverage of press releases with llms”. In: Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing. 2024, pp. 21814–21828.

[274] Alexander Spangher et al. “Explaining Mixtures of Sources in News Articles”. In:
(2024).

[275] Alexander Spangher et al. “NewsInterview: a Dataset and a Playground to Evaluate
LLMs’ Grounding Gap via Informational Interviews”. In: Proceedings of the 63rd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers).
2025, pp. 32895–32925.

[276] Sebastian Padó et al. “Who sides with whom? towards computational construction
of discourse networks for political debates”. In: Proceedings of the 57th Annual Meeting
of the Association for Computational Linguistics. 2019, pp. 2841–2847.

303

https://api.semanticscholar.org/CorpusID:1153355
https://proceedings.mlr.press/v48/thomasa16.html
https://proceedings.mlr.press/v48/thomasa16.html


Bibliography

[277] Timote Vaucher et al. “Quotebank: a corpus of quotations from a decade of news”.
In: Proceedings of the 14th ACM International Conference on Web Search and Data Mining.
2021, pp. 328–336.

[278] Momchil Hardalov et al. “A survey on stance detection for mis-and disinfor-
mation identification”. In: arXiv preprint arXiv:2103.00242 (2022). url: https://
aclanthology.org/2022.findings-naacl.94.

[279] Steffen Eger, Johannes Daxenberger, and Iryna Gurevych. “Neural end-to-end learn-
ing for computational argumentation mining”. In: arXiv preprint arXiv:1704.06104
(2017).

[280] Jeroen Peperkamp and Bettina Berendt. “Diversity Checker: Toward recommenda-
tions for improving journalism with respect to diversity”. In: Adjunct Publication of
the 26th Conference on User Modeling, Adaptation and Personalization. 2018, pp. 35–41.

[281] Dario Pavllo, Tiziano Piccardi, and Robert West. “Quootstrap: Scalable unsupervised
extraction of quotation-speaker pairs from large news corpora via bootstrapping”.
In: Twelfth International AAAI Conference on Web and Social Media. 2018.

[282] Edward Newell, Drew Margolin, and Derek Ruths. “An attribution relations corpus
for political news”. In: Proceedings of the Eleventh International Conference on Language
Resources and Evaluation (LREC 2018). 2018.

[283] Joakim Nivre. “Dependency parsing”. In: Language and Linguistics Compass 4.3
(2010), pp. 138–152.

[284] Manzil Zaheer et al. “Big bird: Transformers for longer sequences”. In: Advances in
Neural Information Processing Systems 33 (2020), pp. 17283–17297.

[285] Jacob Devlin et al. “Bert: Pre-training of deep bidirectional transformers for language
understanding”. In: arXiv preprint arXiv:1810.04805 (2018), pp. 4171–4186.

[286] Yuval Kirstain, Ori Ram, and Omer Levy. “Coreference Resolution without Span
Representations”. In: Proceedings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International Joint Conference on Natural Language
Processing (Volume 2: Short Papers). 2021, pp. 14–19.

[287] Shon Otmazgin, Arie Cattan, and Yoav Goldberg. “LingMess: Linguistically
Informed Multi Expert Scorers for Coreference Resolution”. In: arXiv preprint
arXiv:2205.12644 (2022).

[288] Jesse Mu, Xiang Lisa Li, and Noah Goodman. “Learning to Compress Prompts with
Gist Tokens”. In: arXiv preprint arXiv:2304.08467 (2023).

304

https://aclanthology.org/2022.findings-naacl.94
https://aclanthology.org/2022.findings-naacl.94


Bibliography

[289] Alexander Spangher et al. “NewsEdits: A News Article Revision Dataset and a
Novel Document-Level Reasoning Challenge”. In: Proceedings of the 2022 Conference
of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies. 2022, pp. 127–157.

[290] James T Hamilton. “All the news that’s fit to sell”. In: All the News That’s Fit to Sell.
Princeton University Press, 2011.

[291] Evan Sandhaus. “The new york times annotated corpus”. In: Linguistic Data Consor-
tium, Philadelphia 6.12 (2008), e26752.

[292] Armand Joulin et al. “Bag of Tricks for Efficient Text Classification”. In: arXiv preprint
arXiv:1607.01759 (2016).

[293] Daniel Golovin and Andreas Krause. “Adaptive submodularity: Theory and ap-
plications in active learning and stochastic optimization”. In: Journal of Artificial
Intelligence Research 42 (2011), pp. 427–486.

[294] Andreas Krause and Daniel Golovin. “Submodular function maximization.” In:
Tractability 3.71-104 (2014), p. 3.

[295] Alex Kulesza, Ben Taskar, et al. “Determinantal point processes for machine
learning”. In: Foundations and Trends® in Machine Learning 5.2–3 (2012), pp. 123–286.

[296] Richard S Sutton, Doina Precup, and Satinder Singh. “Between MDPs and semi-
MDPs: A framework for temporal abstraction in reinforcement learning”. In: Artificial
intelligence 112.1-2 (1999), pp. 181–211.

[297] Sergey Levine et al. “Offline reinforcement learning: Tutorial, review, and perspec-
tives on open problems”. In: arXiv preprint arXiv:2005.01643 (2020).

[298] Nathan Kallus and Angela Zhou. “Confounding-robust policy evaluation in infinite-
horizon reinforcement learning”. In: Advances in neural information processing systems
33 (2020), pp. 22293–22304.

[299] Alizée Pace et al. “Delphic offline reinforcement learning under nonidentifiable
hidden confounding”. In: arXiv preprint arXiv:2306.01157 (2023).

[300] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. “A reduction of imitation
learning and structured prediction to no-regret online learning”. In: Proceedings
of the fourteenth international conference on artificial intelligence and statistics. JMLR
Workshop and Conference Proceedings. 2011, pp. 627–635.

[301] Chandra Bhagavatula et al. “Content-Based Citation Recommendation”. In: Pro-
ceedings of the 2018 Conference of the North American Chapter of the Association for

305



Bibliography

Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). 2018,
pp. 238–251.

[302] Chanwoo Jeong et al. “A context-aware citation recommendation model with BERT
and graph convolutional networks”. In: Scientometrics 124.3 (2020), pp. 1907–1922.

[303] Kehan Long et al. “Recommending Missed Citations Identified by Reviewers: A New
Task, Dataset and Baselines”. In: Proceedings of the 2024 Joint International Conference
on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024).
2024, pp. 13699–13711.

[304] Savvas Petridis et al. “Anglekindling: Supporting journalistic angle ideation with
large language models”. In: Proceedings of the 2023 CHI Conference on Human Factors
in Computing Systems. 2023, pp. 1–16.

[305] Henk Pander Maat and Caro de Jong. “How newspaper journalists reframe product
press release information”. In: Journalism 14.3 (2013), pp. 348–371.

[306] Edward Spence and Peter Simmons. “The practice and ethics of media release
journalism”. In: Australian Journalism Review 28.1 (2006), pp. 167–181.

[307] Ben Welsh. Story Sniffer. Tech. rep. The Reynolds Journalism Institute, University of
Missouri, 2022. url: https://palewi.re/docs/storysniffer/.

[308] Greg R Notess. “The Wayback Machine: The Web’s Archive.” In: Online 26.2 (2002),
pp. 59–61.

[309] Ido Dagan, Oren Glickman, and Bernardo Magnini. “The Pascal recognising textual
entailment challenge”. In: Machine Learning Challenges Workshop. Springer. 2005,
pp. 177–190.

[310] Philippe Laban et al. “SummaC: Re-visiting NLI-based models for inconsistency
detection in summarization”. In: Transactions of the Association for Computational
Linguistics 10 (2022), pp. 163–177.

[311] Shon Otmazgin, Arie Cattan, and Yoav Goldberg. “F-coref: Fast, Accurate and
Easy to Use Coreference Resolution”. In: Asia-Pacific Chapter of the Association for
Computational Linguistics (AACL). 2022.

[312] Yixin Nie et al. “Adversarial NLI: A New Benchmark for Natural Language Under-
standing”. In: Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics. 2020, pp. 4885–4901.

[313] Erik Arakelyan, Zhaoqi Liu, and Isabelle Augenstein. “Semantic Sensitivities and
Inconsistent Predictions: Measuring the Fragility of NLI Models”. In: Proceedings

306

https://palewi.re/docs/storysniffer/


Bibliography

of the 18th Conference of the European Chapter of the Association for Computational
Linguistics (Volume 1: Long Papers). 2024, pp. 432–444.

[314] Alexander Spangher et al. “Explaining Mixtures of Sources in News Articles”. In:
Conference on Empirical Methods in Natural Language Processing. 2024.

[315] Brant Houston and Mark Horvit. Investigative Reporters Handbook. Bedford/Saint
Martin’s, 2020.

[316] Elena Bruni and Anna Comacchio. “Configuring a new business model through
conceptual combination: The rise of the Huffington Post”. In: Long Range Planning
56.1 (2023), p. 102249.

[317] Marcel Machill, Markus Beiler, and Iris Hellmann. “The selection process in local
court reporting: A case study of four Dresden daily newspapers”. In: Journalism
Practice 1.1 (2007), pp. 62–81.

[318] Yufei Tian et al. “Are Large Language Models Capable of Generating Human-Level
Narratives?” In: 2024 Conference on Empirical Methods in Natural Language Processing.
2024.

[319] Albert Q. Jiang et al. “Mixtral of Experts”. In: arXiv abs/2401.04088 (2024).

[320] Aidan Gomez. “Command R: Retrieval-Augmented Generation at Production Scale”.
In: (2024). url: https://txt.cohere.com/command-r/.

[321] Mats Nylund. “Toward creativity management: Idea generation and newsroom
meetings”. In: International Journal on Media Management 15.4 (2013), pp. 197–210.

[322] Nasrin Mostafazadeh et al. “A Corpus and Cloze Evaluation for Deeper Under-
standing of Commonsense Stories”. In: Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language
Technologies. Ed. by Kevin Knight, Ani Nenkova, and Owen Rambow. San Diego,
California: Association for Computational Linguistics, June 2016, pp. 839–849. doi:
10.18653/v1/N16-1098. url: https://aclanthology.org/N16-1098.

[323] Yufei Tian et al. “Unsupervised Melody-to-Lyrics Generation”. In: arXiv abs/2305.19228
(2023).

[324] David M Ryfe. “How journalists internalize news practices and why it matters”. In:
Journalism 24.5 (2023), pp. 921–937.

[325] Fabrice Harel-Canada et al. “Measuring Psychological Depth in Language Models”.
In: 2024 Conference on Empirical Methods in Natural Language Processing.

307

https://txt.cohere.com/command-r/
https://doi.org/10.18653/v1/N16-1098
https://aclanthology.org/N16-1098


Bibliography

[326] Yufei Tian et al. “MacGyver: Are Large Language Models Creative Problem Solvers?”
In: North American Chapter of the Association for Computational Linguistics. 2023.

[327] Ken Gilhooly. “AI vs humans in the AUT: Simulations to LLMs”. In: Journal of
Creativity (2023), p. 100071.

[328] Yunpu Zhao et al. “Assessing and Understanding Creativity in Large Language
Models”. In: arXiv abs/2401.12491 (2024).

[329] Lauren Rogal. “Secrets, Lies, and Lessons from the Theranos Scandal”. In: Hastings
LJ 72 (2020), p. 1663.

[330] Patrick Lewis et al. “Retrieval-augmented generation for knowledge-intensive NLP
tasks”. In: Advances in Neural Information Processing Systems 33 (2020), pp. 9459–9474.

[331] Timo Schick et al. “Toolformer: Language Models Can Teach Themselves to Use
Tools”. In: arXiv abs/2302.04761 (2023).

[332] Chau Pham et al. “TopicGPT: A Prompt-based Topic Modeling Framework”. In:
Proceedings of the 2024 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies (Volume 1: Long Papers). 2024,
pp. 2956–2984.

[333] Nils Reimers and Iryna Gurevych. “Sentence-BERT: Sentence Embeddings using
Siamese BERT-Networks”. In: Proceedings of the 2019 Conference on Empirical Methods
in Natural Language Processing. Association for Computational Linguistics, Nov. 2019.
url: https://arxiv.org/abs/1908.10084.

[334] Jaime Carbonell and Jade Goldstein. “The use of MMR, diversity-based reranking
for reordering documents and producing summaries”. In: Proceedings of the 21st
annual international ACM SIGIR conference on Research and development in information
retrieval. ACM. 1998, pp. 335–336.

[335] James Allan. “Topic detection and tracking: event-based information organization”.
In: Topic Detection and Tracking. Springer, 2003, pp. 1–16.

[336] Charles LA Clarke et al. “Novelty and diversity in information retrieval evaluation”.
In: Proceedings of the 31st annual international ACM SIGIR conference on Research and
development in information retrieval. ACM. 2008, pp. 659–666.

[337] Herbert J Gans. Deciding What’s News: A Study of CBS Evening News, NBC Nightly
News, Newsweek, and Time. Northwestern University Press, 1979.

308

https://arxiv.org/abs/1908.10084


Bibliography

[338] Junxia Ma et al. “Chain of Stance: Stance Detection with Large Language Models”.
In: CCF International Conference on Natural Language Processing and Chinese Computing.
Springer. 2024, pp. 82–94.

[339] Alexander Spangher et al. “A Novel Multi-Document Retrieval Benchmark: Journal-
ist Source-Selection in Newswriting”. In: Proceedings of the 4th International Workshop
on Knowledge-Augmented Methods for Natural Language Processing. 2025, pp. 180–204.

[340] Gaye Tuchman. “Making news: A study in the construction of reality”. In: Free Pres
(1978).

[341] Harsh Trivedi et al. “Interleaving Retrieval with Chain-of-Thought Reasoning
for Knowledge-Intensive Multi-Step Questions”. In: Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 2023,
pp. 10014–10037.

[342] Rodrigo Nogueira and Kyunghyun Cho. “Passage Re-ranking with BERT”. In: arXiv
preprint arXiv:1901.04085. 2019.

[343] Gail Sedorkin. Interviewing: A Guide for Journalists and Writers. 4th. Allen & Unwin,
2015.

[344] Stephen E Robertson and Steve Walker. “Some simple effective approximations to the
2-poisson model for probabilistic weighted retrieval”. In: SIGIR’94: Proceedings of the
Seventeenth Annual International ACM-SIGIR Conference on Research and Development in
Information Retrieval, organised by Dublin City University. Springer. 1994, pp. 232–241.

[345] Victor Sanh et al. “DistilBERT, a distilled version of BERT: smaller, faster, cheaper
and lighter”. In: arXiv preprint arXiv:1910.01108 (2019).

[346] Tenghao Huang, Dongwon Jung, and Muhao Chen. “Planning and Editing What
You Retrieve for Enhanced Tool Learning”. In: ArXiv abs/2404.00450 (2024). url:
https://api.semanticscholar.org/CorpusID:268819329.

[347] Nick Craswell et al. “Overview of the TREC 2019 Deep Learning Track”. In:
Proceedings of the Twenty-Eighth Text REtrieval Conference (TREC 2019). NIST. 2020.

[348] Omar Khattab and Matei Zaharia. “Colbert: Efficient and effective passage search
via contextualized late interaction over bert”. In: Proceedings of the 43rd International
ACM SIGIR conference on research and development in Information Retrieval. 2020,
pp. 39–48.

[349] Kartik A Santhanam et al. “ColBERTv2: Effective and Efficient Retrieval via
Lightweight Late Interaction”. In: Proceedings of the 45th International ACM SI-

309

https://api.semanticscholar.org/CorpusID:268819329


Bibliography

GIR Conference on Research and Development in Information Retrieval. ACM. 2022,
pp. 337–347.

[350] Zihao Zhao et al. “Calibrate before use: Improving few-shot performance of language
models”. In: International Conference on Machine Learning. PMLR. 2021, pp. 12697–
12706.

[351] Ohad Rubin, Jonathan Herzig, and Jonathan Berant. “Learning To Retrieve Prompts
for In-Context Learning”. In: Proceedings of the 2022 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies.
2022, pp. 2655–2671.

[352] Shunyu Yao et al. “ReAct: Synergizing Reasoning and Acting in Language Models”.
In: arXiv preprint arXiv:2210.03629 (2022).

[353] Eric Zelikman et al. “Star: Bootstrapping reasoning with reasoning”. In: Advances in
Neural Information Processing Systems 35 (2022), pp. 15476–15488.

[354] Frederic Charles Bartlett. Remembering: A study in experimental and social psychology.
Cambridge university press, 1932.

[355] David E Rumelhart. “Schemata: The building blocks of cognition”. In: Theoretical
issues in reading comprehension. Routledge, 1980, pp. 33–58.

[356] Roger C Schank and Robert P Abelson. Scripts, plans, goals, and understanding: An
inquiry into human knowledge structures. Psychology press, 1977.

[357] Marvin Minsky. “A framework for representing knowledge”. In: (1974).

[358] Vanessa E Ghosh and Asaf Gilboa. “What is a memory schema? A historical
perspective on current neuroscience literature”. In: Neuropsychologia 53 (2014),
pp. 104–114.

[359] Marlieke TR Van Kesteren et al. “How schema and novelty augment memory
formation”. In: Trends in neurosciences 35.4 (2012), pp. 211–219.

[360] Walter Kintsch and Teun A Van Dĳk. “Toward a model of text comprehension and
production.” In: Psychological review 85.5 (1978), p. 363.

[361] Jean M Mandler and Nancy S Johnson. “Remembrance of things parsed: Story
structure and recall”. In: Cognitive psychology 9.1 (1977), pp. 111–151.

[362] Vladimir Propp. Morphology of the Folktale. University of Texas press, 1968.

310



Bibliography

[363] Barbara J Grosz and Candace L Sidner. “Attention, intentions, and the structure of
discourse”. In: Computational linguistics 12.3 (1986), pp. 175–204.

[364] William C Mann and Sandra A Thompson. “Rhetorical structure theory: Toward a
functional theory of text organization”. In: Text-interdisciplinary Journal for the Study
of Discourse 8.3 (1988), pp. 243–281.

[365] Gabriel A Radvansky and Jeffrey M Zacks. “Event perception”. In: Wiley Interdisci-
plinary Reviews: Cognitive Science 2.6 (2011), pp. 608–620.

[366] Matthew M Botvinick, Yael Niv, and Andew G Barto. “Hierarchically organized
behavior and its neural foundations: A reinforcement learning perspective”. In:
cognition 113.3 (2009), pp. 262–280.

[367] Momchil Hardalov et al. “Cross-Domain Label-Adaptive Stance Detection”. In:
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing.
2021, pp. 9011–9028.

[368] Edoardo M Airoldi and Jonathan M Bischof. “Improving and evaluating topic
models and other models of text”. In: Journal of the American Statistical Association
111.516 (2016), pp. 1381–1403.

[369] Daphne Koller and Nir Friedman. Probabilistic graphical models: principles and tech-
niques. MIT press, 2009.

[370] Todd K Moon. “The expectation-maximization algorithm”. In: IEEE Signal processing
magazine 13.6 (1996), pp. 47–60.

[371] Jonathan Chang et al. “Reading tea leaves: How humans interpret topic models”.
In: Advances in neural information processing systems 22 (2009).

[372] David Bamman, Brendan O’Connor, and Noah A Smith. “Learning latent personas
of film characters”. In: Proceedings of the 51st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers). 2013, pp. 352–361.

[373] David Bamman and Noah A Smith. “Unsupervised discovery of biographical
structure from text”. In: Transactions of the Association for Computational Linguistics 2
(2014), pp. 363–376.

[374] Hanna M Wallach et al. “Evaluation methods for topic models”. In: Proceedings of
the 26th annual international conference on machine learning. 2009, pp. 1105–1112.

[375] GuoDong Zhou and KimTeng Lua. “Word Association and MI-Trigger-based
Language Modeling”. In: 36th Annual Meeting of the Association for Computational
Linguistics and 17th International Conference on Computational Linguistics, Volume 2.

311



Bibliography

Montreal, Quebec, Canada: Association for Computational Linguistics, Aug. 1998,
pp. 1465–1471. doi: 10.3115/980691.980808. url: https://aclanthology.org/P98-
2239.

[376] Yuntian Deng, Volodymyr Kuleshov, and Alexander M Rush. “Model Criticism
for Long-Form Text Generation”. In: Proceedings of the 2022 Conference on Empirical
Methods in Natural Language Processing. 2022, pp. 11887–11912.

[377] Khalid Al Khatib et al. “A news editorial corpus for mining argumentation strate-
gies”. In: Proceedings of COLING 2016, the 26th International Conference on Computational
Linguistics: Technical Papers. 2016, pp. 3433–3443.

[378] Margaret Sullivan. “Tightening the screws on anonymous sources”. In: New York
Times (2016).

[379] Kate C McLean et al. “Narrative Identity in the Social World: The Press for Stability”.
In: Handbook of Personality Psychology (2019).

[380] J Richard Landis and Gary G Koch. “The measurement of observer agreement for
categorical data”. In: biometrics (1977), pp. 159–174.

[381] Adina Williams, Tristan Thrush, and Douwe Kiela. “ANLIzing the Adversarial
Natural Language Inference Dataset”. In: (2022).

[382] Dean Pomerleau and Delip Rao. “Fake news challenge stage 1 (FNC-I): Stance
detection”. In: Retrieved March 15 (2017), p. 2023.

[383] Sihao Chen et al. “Seeing Things from a Different Angle: Discovering Diverse
Perspectives about Claims”. In: Proceedings of NAACL-HLT. 2019, pp. 542–557.

[384] Ivan Habernal et al. “The argument reasoning comprehension task: Identification
and reconstruction of implicit warrants”. In: arXiv preprint arXiv:1708.01425 (2017).

[385] William Ferreira and Andreas Vlachos. “Emergent: a novel data-set for stance
classification”. In: Proceedings of the 2016 conference of the North American chapter of the
association for computational linguistics: Human language technologies. ACL. 2016.

[386] Revanth Gangi Reddy et al. “NewsClaims: A New Benchmark for Claim Detection
from News with Background Knowledge”. In: arXiv preprint arXiv:2112.08544 (2021).

[387] Xinyi Wang et al. “Large Language Models Are Latent Variable Models: Explaining
and Finding Good Demonstrations for In-Context Learning”. In: Thirty-seventh
Conference on Neural Information Processing Systems. 2023.

312

https://doi.org/10.3115/980691.980808
https://aclanthology.org/P98-2239
https://aclanthology.org/P98-2239


Bibliography

[388] Guillaume Sanchez et al. “Stay on Topic with Classifier-Free Guidance”. In: Inter-
national Conference on Machine Learning. 2024. url: https://api.semanticscholar.
org/CorpusID:272330615.

[389] Clara Meister and Ryan Cotterell. “Language model evaluation beyond perplexity”.
In: arXiv preprint arXiv:2106.00085 (2021).

[390] Byung-Doh Oh, Christian Clark, and William Schuler. “Comparison of structural
parsers and neural language models as surprisal estimators”. In: Frontiers in Artificial
Intelligence 5 (2022), p. 777963.

[391] Kun Lu et al. “Vocabulary size and its effect on topic representation”. In: Information
Processing & Management 53.3 (2017), pp. 653–665.

[392] Aristidis Likas, Nikos Vlassis, and Jakob J Verbeek. “The global k-means clustering
algorithm”. In: Pattern recognition 36.2 (2003), pp. 451–461.

[393] Wichayaporn Wongkamjan et al. “More Victories, Less Cooperation: Assessing
Cicero’s Diplomacy Play”. In: Proceedings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers). Ed. by Lun-Wei Ku, Andre
Martins, and Vivek Srikumar. Bangkok, Thailand: Association for Computational
Linguistics, Aug. 2024, pp. 12423–12441. doi: 10.18653/v1/2024.acl-long.672. url:
https://aclanthology.org/2024.acl-long.672/.

[394] Omar Shaikh et al. “Grounding Gaps in Language Model Generations”. In: Pro-
ceedings of the 2024 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies (Volume 1: Long Papers). 2024,
pp. 6279–6296.

[395] Herbert H Clark. Using language. Cambridge university press, 1996.

[396] Hyundong Cho and Jonathan May. “Grounding Conversations with Improvised Di-
alogues”. In: Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics. 2020, pp. 2398–2413.

[397] Enkelejda Kasneci et al. “ChatGPT for good? On opportunities and challenges of
large language models for education”. In: Learning and individual differences 103
(2023), p. 102274.

[398] Per Carlbring et al. “A new era in Internet interventions: The advent of Chat-GPT
and AI-assisted therapist guidance”. In: Internet Interventions 32 (2023).

[399] Lisa P Argyle et al. “Ai chat assistants can improve conversations about divisive
topics”. In: arXiv preprint arXiv:2302.07268 (2023).

313

https://api.semanticscholar.org/CorpusID:272330615
https://api.semanticscholar.org/CorpusID:272330615
https://doi.org/10.18653/v1/2024.acl-long.672
https://aclanthology.org/2024.acl-long.672/


Bibliography

[400] Hannah Rashkin et al. “Towards Empathetic Open-domain Conversation Models:
A New Benchmark and Dataset”. In: Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics. Ed. by Anna Korhonen, David Traum, and
Lluís Màrquez. Florence, Italy: Association for Computational Linguistics, July 2019,
pp. 5370–5381. doi: 10.18653/v1/P19-1534. url: https://aclanthology.org/P19-
1534.

[401] Xuewei Wang et al. “Persuasion for Good: Towards a Personalized Persuasive
Dialogue System for Social Good”. In: Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics. Ed. by Anna Korhonen, David Traum, and
Lluís Màrquez. Florence, Italy: Association for Computational Linguistics, July 2019,
pp. 5635–5649. doi: 10.18653/v1/P19-1566. url: https://aclanthology.org/P19-
1566/.

[402] Siyang Liu et al. “Towards Emotional Support Dialog Systems”. In: Proceedings of
the 59th Annual Meeting of the Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Processing (Volume 1: Long Papers).
2021, pp. 3469–3483.

[403] Andrew Caines et al. “The Teacher-Student Chatroom Corpus”. In: Proceedings
of the 9th Workshop on NLP for Computer Assisted Language Learning. Ed. by David
Alfter et al. Gothenburg, Sweden: LiU Electronic Press, Nov. 2020, pp. 10–20. url:
https://aclanthology.org/2020.nlp4call-1.2/.

[404] Jonathan Gratch et al. “The Distress Analysis Interview Corpus of human and
computer interviews”. In: Proceedings of the Ninth International Conference on Language
Resources and Evaluation (LREC’14). Ed. by Nicoletta Calzolari et al. Reykjavik, Iceland:
European Language Resources Association (ELRA), May 2014, pp. 3123–3128. url:
http://www.lrec-conf.org/proceedings/lrec2014/pdf/508_Paper.pdf.

[405] Dympna Casey. “Challenges of collecting data in the clinical setting”. In: NT Research
9.2 (2004), pp. 131–141.

[406] Tony Harcup. Journalism: Principles and Practice. 3rd. London, UK: SAGE Publications,
2015.

[407] Bodhisattwa Prasad Majumder et al. “Interview: A large-scale open-source corpus
of media dialog”. In: arXiv preprint arXiv:2004.03090 (2020).

[408] Chenguang Zhu et al. “MediaSum: A Large-scale Media Interview Dataset for
Dialogue Summarization”. In: Proceedings of the 2021 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies.
Ed. by Kristina Toutanova et al. Online: Association for Computational Linguistics,
June 2021, pp. 5927–5934. doi: 10.18653/v1/2021.naacl-main.474. url: https:
//aclanthology.org/2021.naacl-main.474/.

314

https://doi.org/10.18653/v1/P19-1534
https://aclanthology.org/P19-1534
https://aclanthology.org/P19-1534
https://doi.org/10.18653/v1/P19-1566
https://aclanthology.org/P19-1566/
https://aclanthology.org/P19-1566/
https://aclanthology.org/2020.nlp4call-1.2/
http://www.lrec-conf.org/proceedings/lrec2014/pdf/508_Paper.pdf
https://doi.org/10.18653/v1/2021.naacl-main.474
https://aclanthology.org/2021.naacl-main.474/
https://aclanthology.org/2021.naacl-main.474/


Bibliography

[409] Hugo Touvron et al. “Llama 2: Open foundation and fine-tuned chat models”. In:
arXiv preprint arXiv:2307.09288 (2023). arXiv: 2302.13971 [cs.CL].

[410] Woosuk Kwon et al. “Efficient memory management for large language model
serving with pagedattention”. In: Proceedings of the 29th Symposium on Operating
Systems Principles. 2023, pp. 611–626.

[411] Rudolf Flesch. “Flesch-Kincaid readability test”. In: Retrieved October 26.3 (2007),
p. 2007.

[412] Omar Shaikh et al. “Grounding Gaps in Language Model Generations”. In: Pro-
ceedings of the 2024 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies (Volume 1: Long Papers). 2024,
pp. 6279–6296.

[413] Swarnadeep Saha et al. “Branch-Solve-Merge Improves Large Language Model
Evaluation and Generation”. In: Proceedings of the 2024 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language
Technologies (Volume 1: Long Papers). 2024, pp. 8345–8363.

[414] Jiao Ou et al. “DialogBench: Evaluating LLMs as Human-like Dialogue Systems”.
In: Proceedings of the 2024 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers).
2024, pp. 6137–6170.

[415] Robert B Cialdini. Influence: Science and practice. Vol. 4. 2009.

[416] Hiromasa Sakurai and Yusuke Miyao. “Evaluating Intention Detection Capability of
Large Language Models in Persuasive Dialogues”. In: Proceedings of the 62nd Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Ed. by
Lun-Wei Ku, Andre Martins, and Vivek Srikumar. Bangkok, Thailand: Association
for Computational Linguistics, Aug. 2024, pp. 1635–1657. doi: 10.18653/v1/2024.
acl-long.90. url: https://aclanthology.org/2024.acl-long.90.

[417] Yi Zeng et al. “How Johnny Can Persuade LLMs to Jailbreak Them: Rethinking
Persuasion to Challenge AI Safety by Humanizing LLMs”. In: Proceedings of the
62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers). Ed. by Lun-Wei Ku, Andre Martins, and Vivek Srikumar. Bangkok, Thailand:
Association for Computational Linguistics, Aug. 2024, pp. 14322–14350. doi: 10.
18653 / v1 / 2024 . acl - long . 773. url: https : / / aclanthology . org / 2024 . acl -
long.773/.

[418] Jacob B Hirsh, Sonia K Kang, and Galen V Bodenhausen. “Personalized persuasion:
Tailoring persuasive appeals to recipients’ personality traits”. In: Psychological science
23.6 (2012), pp. 578–581.

315

https://arxiv.org/abs/2302.13971
https://doi.org/10.18653/v1/2024.acl-long.90
https://doi.org/10.18653/v1/2024.acl-long.90
https://aclanthology.org/2024.acl-long.90
https://doi.org/10.18653/v1/2024.acl-long.773
https://doi.org/10.18653/v1/2024.acl-long.773
https://aclanthology.org/2024.acl-long.773/
https://aclanthology.org/2024.acl-long.773/


Bibliography

[419] Dallas Card et al. “With Little Power Comes Great Responsibility”. In: Proceedings of
the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP).
Ed. by Bonnie Webber et al. Online: Association for Computational Linguistics,
Nov. 2020, pp. 9263–9274. doi: 10.18653/v1/2020.emnlp-main.745. url: https:
//aclanthology.org/2020.emnlp-main.745/.

[420] Patrick Lewis et al. “Retrieval-Augmented Generation for Knowledge-Intensive
NLP Tasks”. In: Advances in Neural Information Processing Systems. 2020.

[421] OpenAI Cookbook: Reranking with Cross-Encoders. https://cookbook.openai.com/
examples/search_reranking_with_cross-encoders. Accessed 2024-11-26.

[422] Jason Wei et al. “Chain-of-thought prompting elicits reasoning in large language
models”. In: Proceedings of the 36th International Conference on Neural Information
Processing Systems. NIPS ’22. New Orleans, LA, USA: Curran Associates Inc., 2022.
isbn: 9781713871088.

[423] Nils Reimers and Iryna Gurevych. Cross-Encoders for Ranking. https://www.sbert.
net/examples/applications/cross-encoder-ranking. Accessed 2024-11-26.

[424] Andrew Shinn et al. “Self-Reflective Agents Make Language Models Better Reason-
ers”. In: arXiv preprint arXiv:2310.06271 (2023).

[425] Minjun Chang et al. “Self-Reflection with Generative Agents”. In: arXiv preprint
arXiv:2311.09214 (2023).

[426] Lei Huang et al. “A Survey on Hallucination in Large Language Models: Principles,
Taxonomy, Challenges, and Open Questions”. In: ACM Trans. Inf. Syst. 43.2 (Jan. 2025).
issn: 1046-8188. doi: 10.1145/3703155. url: https://doi.org/10.1145/3703155.

[427] Ziyi Liu et al. “InterIntent: Investigating Social Intelligence of LLMs via Intention
Understanding in an Interactive Game Context”. In: Proceedings of the 2024 Conference
on Empirical Methods in Natural Language Processing. Ed. by Yaser Al-Onaizan, Mohit
Bansal, and Yun-Nung Chen. Miami, Florida, USA: Association for Computational
Linguistics, Nov. 2024, pp. 6718–6746. doi: 10.18653/v1/2024.emnlp-main.383. url:
https://aclanthology.org/2024.emnlp-main.383/.

[428] Kushal Chawla et al. “CaSiNo: A Corpus of Campsite Negotiation Dialogues for
Automatic Negotiation Systems”. In: Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language
Technologies. 2021, pp. 3167–3185.

[429] Jiwei Li et al. “Deep Reinforcement Learning for Dialogue Generation”. In: Proceed-
ings of the 2016 Conference on Empirical Methods in Natural Language Processing. 2016,
pp. 1192–1202.

316

https://doi.org/10.18653/v1/2020.emnlp-main.745
https://aclanthology.org/2020.emnlp-main.745/
https://aclanthology.org/2020.emnlp-main.745/
https://cookbook.openai.com/examples/search_reranking_with_cross-encoders
https://cookbook.openai.com/examples/search_reranking_with_cross-encoders
https://www.sbert.net/examples/applications/cross-encoder-ranking
https://www.sbert.net/examples/applications/cross-encoder-ranking
https://doi.org/10.1145/3703155
https://doi.org/10.1145/3703155
https://doi.org/10.18653/v1/2024.emnlp-main.383
https://aclanthology.org/2024.emnlp-main.383/


Bibliography

[430] AC Bohart. “How clients make therapy work”. In: American Psychological Association
(1999).

[431] AL Brown. “Guided discovery in a community of learners”. In: Classroom lessons:
Integrating cognitive theory and classroom practice/press/Bradford Books (1994).

[432] Aske Plaat et al. “Reasoning with large language models, a survey”. In: CoRR (2024).

[433] Fengli Xu et al. “Towards large reasoning models: A survey of reinforced reasoning
with large language models”. In: arXiv preprint arXiv:2501.09686 (2025).

[434] Melanie Mitchell. “Artificial intelligence learns to reason”. In: Science 387.6740
(2025), eadw5211. doi: 10.1126/science.adw5211. eprint: https://www.science.
org/doi/pdf/10.1126/science.adw5211. url: https://www.science.org/doi/abs/
10.1126/science.adw5211.

[435] Ling Yang et al. “ReasonFlux: Hierarchical LLM Reasoning via Scaling Thought
Templates”. In: ArXiv abs/2502.06772 (2025). url: https://api.semanticscholar.
org/CorpusID:276250066.

[436] Zeyu Dai, Himanshu Taneja, and Ruihong Huang. “Fine-grained structure-based
news genre categorization”. In: Proceedings of the Workshop Events and Stories in the
News 2018. 2018, pp. 61–67.

[437] Christian Ameseder. “Effects of narrative journalism on interest and comprehension:
an overview”. In: Journal of Education and Humanities (JEH) 2.2 (2019), pp. 29–50.

[438] Walter Kintsch and Teun A Van Dĳk. “Toward a model of text comprehension and
production.” In: Psychological review 85.5 (1978), p. 363.

[439] Jean M Mandler and Nancy S Johnson. “Remembrance of things parsed: Story
structure and recall”. In: Cognitive psychology 9.1 (1977), pp. 111–151.

[440] Tamara Van Gog. “The signaling (or cueing) principle in multimedia learning”. In:
The Cambridge handbook of multimedia learning. Cambridge University Press, 2014,
pp. 221–230.

[441] Steven Feld. A generative theory of tonal music. 1984.

[442] Horst Po
ttker. “News and its communicative quality: the inverted pyramid—when and why
did it appear?” In: Journalism Studies 4.4 (2003), pp. 501–511.

[443] Morton Ann Gernsbacher. Language comprehension as structure building. Psychology
Press, 1990.

317

https://doi.org/10.1126/science.adw5211
https://www.science.org/doi/pdf/10.1126/science.adw5211
https://www.science.org/doi/pdf/10.1126/science.adw5211
https://www.science.org/doi/abs/10.1126/science.adw5211
https://www.science.org/doi/abs/10.1126/science.adw5211
https://api.semanticscholar.org/CorpusID:276250066
https://api.semanticscholar.org/CorpusID:276250066


Bibliography

[444] William C Mann and Sandra A Thompson. “Rhetorical structure theory: Toward a
functional theory of text organization”. In: Text-interdisciplinary Journal for the Study
of Discourse 8.3 (1988), pp. 243–281.

[445] Qianyu He et al. “Can large language models understand real-world complex
instructions?” In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 38.
16. 2024, pp. 18188–18196.

[446] Alexander Spangher et al. “Sequentially Controlled Text Generation”. In: Findings
of the Association for Computational Linguistics: EMNLP 2022. 2022, pp. 6848–6866.

[447] Nellia Dzhubaeva, Katharina Trinley, and Laura Pissani. “Unstructured Minds,
Predictable Machines: A Comparative Study of Narrative Cohesion in Human and
LLM Stream-of-Consciousness Writing”. In: Proceedings of the 63rd Annual Meeting
of the Association for Computational Linguistics (Volume 4: Student Research Workshop).
2025, pp. 1079–1096.

[448] Nelson F Liu et al. “Lost in the Middle: How Language Models Use Long Contexts”.
In: Transactions of the Association for Computational Linguistics 12 (2024), pp. 157–173.

[449] Yukyung Lee et al. “Navigating the Path of Writing: Outline-guided Text Generation
with Large Language Models”. In: Proceedings of the 2025 Conference of the Nations of
the Americas Chapter of the Association for Computational Linguistics: Human Language
Technologies (Volume 3: Industry Track). 2025, pp. 233–250.

[450] Lili Yao et al. “Plan-and-write: Towards better automatic storytelling”. In: Proceedings
of the AAAI Conference on Artificial Intelligence. Vol. 33. 01. 2019, pp. 7378–7385.

[451] Cheng-Zhi Anna Huang et al. “Music Transformer: Generating Music with Long-
Term Structure”. In: International Conference on Learning Representations.

[452] Prafulla Dhariwal et al. “Jukebox: A generative model for music”. In: arXiv preprint
arXiv:2005.00341 (2020).

[453] Dhruba Ghosh, Hannaneh Hajishirzi, and Ludwig Schmidt. “Geneval: An object-
focused framework for evaluating text-to-image alignment”. In: Advances in Neural
Information Processing Systems 36 (2023), pp. 52132–52152.

[454] Yushi Hu et al. “Tifa: Accurate and interpretable text-to-image faithfulness eval-
uation with question answering”. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision. 2023, pp. 20406–20417.

[455] Katharina Emde, Christoph Klimmt, and Daniela M Schluetz. “Does storytelling
help adolescents to process the news? A comparison of narrative news and the
inverted pyramid”. In: Journalism studies 17.5 (2016), pp. 608–627.

318



Bibliography

[456] Miglena M Sternadori and Kevin Wise. “Men and women read news differently”.
In: Journal of media psychology (2010).

[457] Ruqian Lu et al. “Attributed Rhetorical Structure Grammar for Domain Text
Summarization”. In: arXiv preprint arXiv:1909.00923 (2019).

[458] Xinyi Zhou et al. “Fake News Early Detection: A Theory-Driven Model”. In: Digital
Threats: Research and Practice 1.2 (2020), pp. 1–25.

[459] Tom Brown et al. “Language models are few-shot learners”. In: Advances in neural
information processing systems 33 (2020), pp. 1877–1901.

[460] Iz Beltagy, Matthew E Peters, and Arman Cohan. “Longformer: The long-document
transformer”. In: arXiv preprint arXiv:2004.05150 (2020).

[461] Hannah Rashkin et al. “PlotMachines: Outline-Conditioned Generation with Dy-
namic Plot State Tracking”. In: arXiv abs/2004.14967 (2020).

[462] Xiangyu Peng et al. “Guiding Neural Story Generation with Reader Models”. In:
arXiv preprint arXiv:2112.08596 (2021).

[463] Prafulla Kumar Choubey et al. “Discourse as a Function of Event: Profiling Discourse
Structure in News Articles around the Main Event”. In: Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics. Online: Association for
Computational Linguistics, July 2020, pp. 5374–5386. doi: 10.18653/v1/2020.acl-
main.478. url: https://www.aclweb.org/anthology/2020.acl-main.478.

[464] Nitish Shirish Keskar et al. “Ctrl: A conditional transformer language model for
controllable generation”. In: arXiv preprint arXiv:1909.05858 (2019).

[465] Sumanth Dathathri et al. “Plug and play language models: A simple approach to
controlled text generation”. In: arXiv preprint arXiv:1912.02164 (2019).

[466] Kevin Yang and Dan Klein. “FUDGE: Controlled text generation with future
discriminators”. In: arXiv preprint arXiv:2104.05218 (2021).

[467] Thomas Wolf et al. “Huggingface’s transformers: State-of-the-art natural language
processing”. In: arXiv preprint arXiv:1910.03771 (Oct. 2019), pp. 38–45. doi: 10.18653/
v1/2020.emnlp-demos.6. url: https://aclanthology.org/2020.emnlp-demos.6.

[468] Alexis Ross, Ana Marasović, and Matthew Peters. “Explaining NLP Models via
Minimal Contrastive Editing (MiCE)”. In: Findings of the Association for Computational
Linguistics: ACL-ĲCNLP 2021. Online: Association for Computational Linguistics,
Aug. 2021, pp. 3840–3852. doi: 10.18653/v1/2021.findings-acl.336. url: https:
//aclanthology.org/2021.findings-acl.336.

319

https://doi.org/10.18653/v1/2020.acl-main.478
https://doi.org/10.18653/v1/2020.acl-main.478
https://www.aclweb.org/anthology/2020.acl-main.478
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://aclanthology.org/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2021.findings-acl.336
https://aclanthology.org/2021.findings-acl.336
https://aclanthology.org/2021.findings-acl.336


Bibliography

[469] Colin Raffel et al. “Exploring the limits of transfer learning with a unified text-to-text
transformer”. In: arXiv preprint arXiv:1910.10683 (2019).

[470] Abigail See et al. “Do massively pretrained language models make better story-
tellers?” In: arXiv preprint arXiv:1909.10705 (2019).

[471] Bente Kalsnes and Anders Olof Larsson. “Understanding news sharing across social
media: Detailing distribution on Facebook and Twitter”. In: Journalism studies 19.11
(2018), pp. 1669–1688.

[472] Nguyen Minh Ngoc. “Journalism and Social Media: The Transformation of Jour-
nalism in the Age of Social Media and Online News”. In: European Journal of Social
Sciences Studies 7.6 (2022).

[473] Tianxiao Shen et al. Style Transfer from Non-Parallel Text by Cross-Alignment. 2017.
arXiv: 1705.09655 [cs.CL]. url: https://arxiv.org/abs/1705.09655.

[474] Zhiting Hu et al. “Toward controlled generation of text”. In: International conference
on machine learning. PMLR. 2017, pp. 1587–1596.

[475] Abigail See, Peter J. Liu, and Christopher D. Manning. Get To The Point: Summarization
with Pointer-Generator Networks. 2017. arXiv: 1704.04368 [cs.CL]. url: https://
arxiv.org/abs/1704.04368.

[476] Jingqing Zhang et al. “Pegasus: Pre-training with extracted gap-sentences for
abstractive summarization”. In: International conference on machine learning. PMLR.
2020, pp. 11328–11339.

[477] Junxian He et al. “Ctrlsum: Towards generic controllable text summarization”. In:
arXiv preprint arXiv:2012.04281 (2020).

[478] Chao Zhao et al. “Read Top News First: A Document Reordering Approach for
Multi-Document News Summarization”. In: Findings of the Association for Com-
putational Linguistics: ACL 2022. Ed. by Smaranda Muresan, Preslav Nakov, and
Aline Villavicencio. Dublin, Ireland: Association for Computational Linguistics,
May 2022, pp. 613–621. doi: 10.18653/v1/2022.findings-acl.51. url: https:
//aclanthology.org/2022.findings-acl.51/.

[479] Max Grusky, Mor Naaman, and Yoav Artzi. Newsroom: A Dataset of 1.3 Million
Summaries with Diverse Extractive Strategies. 2020. arXiv: 1804.11283 [cs.CL]. url:
https://arxiv.org/abs/1804.11283.

[480] Zeyu Dai, Himanshu Taneja, and Ruihong Huang. “Fine-grained structure-based
news genre categorization”. In: Proceedings of the Workshop Events and Stories in the
News. 2018, pp. 17–23.

320

https://arxiv.org/abs/1705.09655
https://arxiv.org/abs/1705.09655
https://arxiv.org/abs/1704.04368
https://arxiv.org/abs/1704.04368
https://arxiv.org/abs/1704.04368
https://doi.org/10.18653/v1/2022.findings-acl.51
https://aclanthology.org/2022.findings-acl.51/
https://aclanthology.org/2022.findings-acl.51/
https://arxiv.org/abs/1804.11283
https://arxiv.org/abs/1804.11283


Bibliography

[481] Michel De Montaigne. Essays. Self-published, 1580.

[482] Kota Shamanth Ramanath Nayak. “Does ChatGPT Measure Up to Discourse Unit
Segmentation? A Comparative Analysis Utilizing Zero-Shot Custom Prompts”. In:
().

[483] Jihao Zhao et al. “Meta-chunking: Learning efficient text segmentation via logical
perception”. In: arXiv preprint arXiv:2410.12788 (2024).

[484] Yaxin Fan et al. “Uncovering the Potential of ChatGPT for Discourse Analysis in
Dialogue: An Empirical Study”. In: Proceedings of the 2024 Joint International Conference
on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024).
2024, pp. 16998–17010.

[485] Feng Jiang et al. “Advancing Topic Segmentation and Outline Generation in Chinese
Texts: The Paragraph-level Topic Representation, Corpus, and Benchmark”. In: arXiv
preprint arXiv:2305.14790 (2023).

[486] Alexander Spangher et al. “Sequentially Controlled Text Generation”. In: Findings
of the Association for Computational Linguistics: EMNLP 2022. Ed. by Yoav Goldberg,
Zornitsa Kozareva, and Yue Zhang. Abu Dhabi, United Arab Emirates: Association
for Computational Linguistics, Dec. 2022, pp. 6848–6866. doi: 10.18653/v1/2022.
findings-emnlp.509. url: https://aclanthology.org/2022.findings-emnlp.509.

[487] Bruce T. Lowerre. “The HARPY speech recognition system”. In: 1976. url: https:
//api.semanticscholar.org/CorpusID:61409851.

[488] Chin-Yew Lin. “ROUGE: A Package for Automatic Evaluation of Summaries”. In:
Text Summarization Branches Out. Barcelona, Spain: Association for Computational
Linguistics, July 2004, pp. 74–81. url: https://aclanthology.org/W04-1013/.

[489] Wojciech Kryscinski et al. “Evaluating the Factual Consistency of Abstractive Text
Summarization”. In: Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP). Ed. by Bonnie Webber et al. Online: Association for
Computational Linguistics, Nov. 2020, pp. 9332–9346. doi: 10.18653/v1/2020.emnlp-
main.750. url: https://aclanthology.org/2020.emnlp-main.750/.

[490] Vladimir I. Levenshtein. “Binary codes capable of correcting deletions, insertions,
and reversals”. In: Soviet physics. Doklady 10 (1965), pp. 707–710. url: https://api.
semanticscholar.org/CorpusID:60827152.

[491] David Caswell and Konstantin Dörr. “Automated Journalism 2.0: Event-driven
narratives: From simple descriptions to real stories”. In: Journalism practice 12.4
(2018), pp. 477–496.

321

https://doi.org/10.18653/v1/2022.findings-emnlp.509
https://doi.org/10.18653/v1/2022.findings-emnlp.509
https://aclanthology.org/2022.findings-emnlp.509
https://api.semanticscholar.org/CorpusID:61409851
https://api.semanticscholar.org/CorpusID:61409851
https://aclanthology.org/W04-1013/
https://doi.org/10.18653/v1/2020.emnlp-main.750
https://doi.org/10.18653/v1/2020.emnlp-main.750
https://aclanthology.org/2020.emnlp-main.750/
https://api.semanticscholar.org/CorpusID:60827152
https://api.semanticscholar.org/CorpusID:60827152


Bibliography

[492] Alexander Spangher et al. “NewsEdits: A News Article Revision Dataset and a
Novel Document-Level Reasoning Challenge”. In: Proceedings of the 2022 Conference
of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies. Ed. by Marine Carpuat, Marie-Catherine de Marneffe, and
Ivan Vladimir Meza Ruiz. Seattle, United States: Association for Computational
Linguistics, July 2022, pp. 127–157. doi: 10.18653/v1/2022.naacl-main.10. url:
https://aclanthology.org/2022.naacl-main.10.

[493] David Caswell. “Telling every story: Characteristics of systematic reporting”. In:
Journalism and Reporting Synergistic Effects of Climate Change. Routledge, 2024, pp. 266–
283.

[494] Alexander Quinn Nichol et al. “GLIDE: Towards Photorealistic Image Generation
and Editing with Text-Guided Diffusion Models”. In: International Conference on
Machine Learning. PMLR. 2022, pp. 16784–16804.

[495] Jonathan Ho and Tim Salimans. “Classifier-Free Diffusion Guidance”. In: NeurIPS
2021 Workshop on Deep Generative Models and Downstream Applications. 2021.

[496] Shanchuan Lin et al. Common Diffusion Noise Schedules and Sample Steps are Flawed.
2023. arXiv: 2305.08891 [cs.CV].

[497] Prafulla Dhariwal and Alexander Nichol. “Diffusion models beat gans on image
synthesis”. In: Advances in Neural Information Processing Systems 34 (2021), pp. 8780–
8794.

[498] Rinon Gal et al. “Stylegan-nada: Clip-guided domain adaptation of image genera-
tors”. In: arXiv preprint arXiv:2108.00946 (2021).

[499] Gwanghyun Kim, Taesung Kwon, and Jong Chul Ye. “Diffusionclip: Text-guided
diffusion models for robust image manipulation”. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2022, pp. 2426–2435.

[500] Katherine Crowson et al. “Vqgan-clip: Open domain image generation and editing
with natural language guidance”. In: Computer Vision–ECCV 2022: 17th European
Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXXVII. Springer.
2022, pp. 88–105.

[501] Jonathan Ho, Ajay Jain, and Pieter Abbeel. “Denoising diffusion probabilistic
models”. In: Advances in neural information processing systems 33 (2020), pp. 6840–
6851.

[502] Yilun Du, Shuang Li, and Igor Mordatch. “Compositional visual generation with
energy based models”. In: Advances in Neural Information Processing Systems 33 (2020),
pp. 6637–6647.

322

https://doi.org/10.18653/v1/2022.naacl-main.10
https://aclanthology.org/2022.naacl-main.10
https://arxiv.org/abs/2305.08891


Bibliography

[503] Stable Diffusion Documentation. How does negative prompt work? https://stable-
diffusion-art.com/how-negative-prompt-work/.

[504] Katherine Crowson et al. “Vqgan-clip: Open domain image generation and editing
with natural language guidance”. In: Computer Vision–ECCV 2022: 17th European
Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXXVII. Springer.
2022, pp. 88–105.

[505] Robin Rombach et al. High-Resolution Image Synthesis with Latent Diffusion Models.
2021. arXiv: 2112.10752 [cs.CV].

[506] Huan Ling et al. “EditGAN: High-Precision Semantic Image Editing”. In: Advances
in Neural Information Processing Systems (NeurIPS). 2021.

[507] Jiaming Song, Chenlin Meng, and Stefano Ermon. “Denoising Diffusion Implicit
Models”. In: International Conference on Learning Representations. 2020.

[508] Andrew Brock et al. “Neural Photo Editing with Introspective Adversarial Net-
works”. In: International Conference on Learning Representations. 2016.

[509] Tomas Mikolov et al. “Efficient Estimation of Word Representations in Vector Space”.
In: International Conference on Learning Representations. 2013.

[510] Jacob Devlin et al. “BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding”. In: ArXiv abs/1810.04805 (2019).

[511] Nora Belrose et al. “LEACE: Perfect linear concept erasure in closed form”. In: arXiv
preprint arXiv:2306.03819 (2023).

[512] Nikolay Malkin, Zhen Wang, and Nebojsa Jojic. “Coherence boosting: When your
pretrained language model is not paying enough attention”. In: Proceedings of the 60th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers).
Dublin, Ireland: Association for Computational Linguistics, May 2022, pp. 8214–8236.
doi: 10.18653/v1/2022.acl-long.565. url: https://aclanthology.org/2022.acl-
long.565.

[513] Jonathan Pei, Kevin Yang, and Dan Klein. PREADD: Prefix-Adaptive Decoding for
Controlled Text Generation. 2023. arXiv: 2307.03214 [cs.CL].

[514] Weĳia Shi et al. “Trusting Your Evidence: Hallucinate Less with Context-aware
Decoding”. In: arXiv preprint arXiv:2305.14739 (2023).

[515] Maxwell Nye et al. “Show Your Work: Scratchpads for Intermediate Computation
with Language Models”. In: Deep Learning for Code Workshop. 2022.

323

https://stable-diffusion-art.com/how-negative-prompt-work/
https://stable-diffusion-art.com/how-negative-prompt-work/
https://arxiv.org/abs/2112.10752
https://doi.org/10.18653/v1/2022.acl-long.565
https://aclanthology.org/2022.acl-long.565
https://aclanthology.org/2022.acl-long.565
https://arxiv.org/abs/2307.03214


Bibliography

[516] Jason Wei et al. “Chain-of-Thought Prompting Elicits Reasoning in Large Language
Models”. In: Advances in Neural Information Processing Systems. Ed. by S. Koyejo et al.
Vol. 35. Curran Associates, Inc., 2022, pp. 24824–24837. url: https://proceedings.
neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-
Paper-Conference.pdf.

[517] Leo Gao et al. A framework for few-shot language model evaluation. Version v0.0.1.
Sept. 2021. doi: 10.5281/zenodo.5371628. url: https://doi.org/10.5281/zenodo.
5371628.

[518] Sören Auer et al. “The SciQA Scientific Question Answering Benchmark for Scholarly
Knowledge”. In: Scientific Reports 13.1 (2023), p. 7240.

[519] Mandar Joshi et al. “Triviaqa: A large scale distantly supervised challenge dataset
for reading comprehension”. In: arXiv preprint arXiv:1705.03551 (2017).

[520] Rowan Zellers et al. “HellaSwag: Can a machine really finish your sentence?” In:
arXiv preprint arXiv:1905.07830 (2019).

[521] Keisuke Sakaguchi et al. “Winogrande: An adversarial winograd schema challenge
at scale”. In: Communications of the ACM 64.9 (2021), pp. 99–106.

[522] Christopher Clark et al. “BoolQ: Exploring the surprising difficulty of natural
yes/no questions”. In: arXiv preprint arXiv:1905.10044 (2019).

[523] Yonatan Bisk et al. “Piqa: Reasoning about physical commonsense in natural
language”. In: Proceedings of the AAAI conference on artificial intelligence. Vol. 34. 05.
2020, pp. 7432–7439.

[524] Karl Cobbe et al. “Training verifiers to solve math word problems”. In: arXiv preprint
arXiv:2110.14168 (2021).

[525] Kinjal Basu, Farhad Shakerin, and Gopal Gupta. “Aqua: Asp-based visual question
answering”. In: Practical Aspects of Declarative Languages: 22nd International Symposium,
PADL 2020, New Orleans, LA, USA, January 20–21, 2020, Proceedings 22. Springer.
2020, pp. 57–72.

[526] Peter Clark et al. “Think you have Solved Question Answering? Try ARC, the AI2
Reasoning Challenge”. In: arXiv:1803.05457v1 (2018).

[527] Denis Paperno et al. “The LAMBADA dataset: Word prediction requiring a broad
discourse context”. In: arXiv preprint arXiv:1606.06031 (2016).

[528] Ari Holtzman et al. “The curious case of neural text degeneration”. In: arXiv preprint
arXiv:1904.09751 (2019).

324

https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://doi.org/10.5281/zenodo.5371628
https://doi.org/10.5281/zenodo.5371628
https://doi.org/10.5281/zenodo.5371628


Bibliography

[529] Stella Biderman et al. Pythia: A Suite for Analyzing Large Language Models Across
Training and Scaling. 2023. arXiv: 2304.01373 [cs.CL].

[530] Hugo Touvron et al. “Llama: Open and efficient foundation language models”. In:
arXiv preprint arXiv:2302.13971 (2023).

[531] Jack W. Rae et al. Scaling Language Models: Methods, Analysis & Insights from Training
Gopher. 2021. doi: 10.48550/ARXIV.2112.11446. url: https://arxiv.org/abs/2112.
11446.

[532] Karl Cobbe et al. “Training Verifiers to Solve Math Word Problems”. In: arXiv
preprint arXiv:2110.14168 (2021).

[533] Wang Ling et al. “Program Induction by Rationale Generation: Learning to Solve
and Explain Algebraic Word Problems”. In: Proceedings of the 55th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers). Vancouver,
Canada: Association for Computational Linguistics, July 2017, pp. 158–167. doi:
10.18653/v1/P17-1015. url: https://aclanthology.org/P17-1015.

[534] Xuezhi Wang et al. “Self-Consistency Improves Chain of Thought Reasoning in
Language Models”. In: ICLR 2023. 2023. url: https://arxiv.org/abs/2203.11171.

[535] Can Xu et al. WizardLM: Empowering Large Language Models to Follow Complex
Instructions. 2023. arXiv: 2304.12244 [cs.CL].

[536] Tim Dettmers et al. QLoRA: Efficient Finetuning of Quantized LLMs. 2023. eprint:
arXiv:2305.14314.

[537] Ben Wang and Aran Komatsuzaki. GPT-J-6B: A 6 Billion Parameter Autoregressive
Language Model. https://github.com/kingoflolz/mesh-transformer-jax. May
2021.

[538] Erik Nĳkamp et al. “CodeGen: An Open Large Language Model for Code with
Multi-Turn Program Synthesis”. In: The Eleventh International Conference on Learning
Representations. 2023. url: https://openreview.net/forum?id=iaYcJKpY2B_.

[539] Mark Chen et al. “Evaluating Large Language Models Trained on Code”. In: (2021).
arXiv: 2107.03374 [cs.LG].

[540] Rohan Taori et al. Stanford Alpaca: An Instruction-following LLaMA model. https:
//github.com/tatsu-lab/stanford_alpaca. 2023.

[541] Kai Greshake et al. “More than you’ve asked for: A Comprehensive Analysis of
Novel Prompt Injection Threats to Application-Integrated Large Language Models”.
In: arXiv preprint arXiv:2302.12173 (2023).

325

https://arxiv.org/abs/2304.01373
https://doi.org/10.48550/ARXIV.2112.11446
https://arxiv.org/abs/2112.11446
https://arxiv.org/abs/2112.11446
https://doi.org/10.18653/v1/P17-1015
https://aclanthology.org/P17-1015
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2304.12244
arXiv:2305.14314
https://github.com/kingoflolz/mesh-transformer-jax
https://openreview.net/forum?id=iaYcJKpY2B_
https://arxiv.org/abs/2107.03374
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca


Bibliography

[542] Andrew Rutherford. ANOVA and ANCOVA: a GLM approach. John Wiley & Sons,
2011.

[543] Ebtesam Almazrouei et al. “Falcon-40B: an open large language model with state-
of-the-art performance”. In: (2023).

[544] Victor Sanh et al. “Multitask Prompted Training Enables Zero-Shot Task General-
ization”. In: International Conference on Learning Representations. 2021.

[545] Andreas Köpf et al. “OpenAssistant Conversations–Democratizing Large Language
Model Alignment”. In: arXiv preprint arXiv:2304.07327 (2023).

[546] Albert Webson and Ellie Pavlick. “Do prompt-based models really understand the
meaning of their prompts?” In: arXiv preprint arXiv:2109.01247 (2021).

[547] Weizhe Yuan et al. “Self-Rewarding Language Models”. In: arXiv preprint arXiv:2401.10020
(2024).

[548] Andrew L. Maas et al. “Learning Word Vectors for Sentiment Analysis”. In: Proceed-
ings of the 49th Annual Meeting of the Association for Computational Linguistics: Human
Language Technologies. Portland, Oregon, USA: Association for Computational Lin-
guistics, June 2011, pp. 142–150. url: http://www.aclweb.org/anthology/P11-1015.

[549] Tao Meng et al. “Controllable Text Generation with Neurally-Decomposed Oracle”.
In: arXiv preprint arXiv:2205.14219 (2022).

[550] José M Chenlo, Alexander Hogenboom, and David E Losada. “Rhetorical Structure
Theory for Polarity Estimation: An Experimental Study”. In: Data & Knowledge
Engineering 94 (2014), pp. 135–147.

[551] Asli Celikyilmaz, Elizabeth Clark, and Jianfeng Gao. “Evaluation of Text Generation:
A Survey”. In: arXiv preprint arXiv:2006.14799 (2020).

[552] Masaru Isonuma, Junichiro Mori, and Ichiro Sakata. “Unsupervised Neural Single-
Document Summarization of Reviews via Learning Latent Discourse Structure
and its Ranking”. In: Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics. Florence, Italy: Association for Computational Linguistics,
July 2019, pp. 2142–2152. doi: 10.18653/v1/P19-1206. url: https://aclanthology.
org/P19-1206.

[553] Georg Rehm, Karolina Zaczynska, and Julián Moreno-Schneider. “Semantic Sto-
rytelling: Towards Identifying Storylines in Large Amounts of Text Content”. In:
(2019).

326

http://www.aclweb.org/anthology/P11-1015
https://doi.org/10.18653/v1/P19-1206
https://aclanthology.org/P19-1206
https://aclanthology.org/P19-1206


Bibliography

[554] Ali Haif Abbas. “Politicizing the Pandemic: A Schemata Analysis of COVID-19
News in Two Selected Newspapers”. In: International Journal for the Semiotics of
Law-Revue internationale de Sémiotique juridique (2020), pp. 1–20.

[555] Rashmi Prasad et al. “The Penn Discourse TreeBank 2.0.” In: LREC. Citeseer. 2008.

[556] Lynn Carlson, Daniel Marcu, and Mary Ellen Okurowski. “Building a Discourse-
Tagged Corpus in the Framework of Rhetorical Structure Theory”. In: Current and
new directions in discourse and dialogue. Springer, 2003, pp. 85–112.

[557] W Victor Yarlott et al. “Identifying the Discourse Function of News Article Para-
graphs”. In: Proceedings of the Workshop Events and Stories in the News 2018. 2018,
pp. 25–33.

[558] Ronan Collobert and Jason Weston. “A Unified Architecture for Natural Language
Processing: Deep Neural Networks with Multitask Learning”. In: Proceedings of the
25th international conference on Machine learning. 2008, pp. 160–167.

[559] Debopam Das, Manfred Stede, and Maite Taboada. “The Good, the Bad, and
the Disagreement: Complex Ground Truth in Rhetorical Structure Analysis”. In:
Proceedings of the 6th Workshop on Recent Advances in RST and Related Formalisms.
2017, pp. 11–19.

[560] Yu Zhang and Qiang Yang. “A Survey on Multi-Task Learning”. In: arXiv preprint
arXiv:1707.08114 (2017).

[561] Xiangci Li, Gully Burns, and Nanyun Peng. “Scientific Discourse Tagging for
Evidence Extraction”. In: Proceedings of the 16th Conference of the European Chapter of
the Association for Computational Linguistics: Main Volume. Online: Association for
Computational Linguistics, Apr. 2021, pp. 2550–2562. url: https://aclanthology.
org/2021.eacl-main.218.

[562] Yinhan Liu et al. RoBERTa: A Robustly Optimized BERT Pretraining Approach. 2019.
arXiv: 1907.11692 [cs.CL].

[563] Ashish Vaswani et al. “Attention is All You Need”. In: Advances in neural information
processing systems 30 (2017), pp. 5998–6008.

[564] David Craig. The Ethics of the Story: Using Narrative Techniques Responsibly in Journalism.
Rowman & Littlefield, 2006.

[565] Kathy Roberts Forde. “Discovering the Explanatory Report in American Newspa-
pers”. In: Journalism Practice 1.2 (2007), pp. 227–244.

327

https://aclanthology.org/2021.eacl-main.218
https://aclanthology.org/2021.eacl-main.218
https://arxiv.org/abs/1907.11692


Bibliography

[566] Catherine A Steele and Kevin G Barnhurst. “The Journalism of Opinion: Network
News Coverage of US Presidential Campaigns, 1968–1988”. In: Critical Studies in
Media Communication 13.3 (1996), pp. 187–209.

[567] Robert F Bales. “Interaction Process Analysis; a Method for the Study of Small
Groups.” In: (1950).

[568] Robert Freed Bales. “Personality and Interpersonal Behavior.” In: (1970).

[569] Peter C Austin and Elizabeth A Stuart. “Moving Towards Best Practice When Using
Inverse Probability of Treatment Weighting (IPTW) Using the Propensity Score to
Estimate Causal Treatment Effects in Observational Studies”. In: Statistics in medicine
34.28 (2015), pp. 3661–3679.

[570] Matthew E Peters et al. “Deep contextualized word representations”. In: Proceedings
of NAACL-HLT. 2018, pp. 2227–2237.

[571] Jaejun Lee, Raphael Tang, and Jimmy Lin. “What Would Elsa Do? Freezing Layers
During Transformer Fine-Tuning”. In: arXiv preprint arXiv:1911.03090 (2019).

[572] Terrance DeVries and Graham W Taylor. “Dataset Augmentation in Feature Space”.
In: arXiv preprint arXiv:1702.05538 (2017).

[573] Jesper E Van Engelen and Holger H Hoos. “A Survey on Semi-Supervised Learning”.
In: Machine Learning 109.2 (2020), pp. 373–440.

[574] Sergey Edunov et al. “Understanding Back-Translation at Scale”. In: Proceedings of
the 2018 Conference on Empirical Methods in Natural Language Processing. Brussels,
Belgium: Association for Computational Linguistics, Oct. 2018, pp. 489–500. doi:
10.18653/v1/D18-1045. url: https://www.aclweb.org/anthology/D18-1045.

[575] Myle Ott et al. “fairseq: A Fast, Extensible Toolkit for Sequence Modeling”. In:
Proceedings of the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics (Demonstrations). 2019, pp. 48–53.

[576] Jiaao Chen, Zichao Yang, and Diyi Yang. “MixText: Linguistically-Informed Interpo-
lation of Hidden Space for Semi-Supervised Text Classification”. In: Proceedings of the
58th Annual Meeting of the Association for Computational Linguistics. Online: Association
for Computational Linguistics, July 2020, pp. 2147–2157. doi: 10.18653/v1/2020.acl-
main.194. url: https://www.aclweb.org/anthology/2020.acl-main.194.

[577] Qizhe Xie et al. “Unsupervised Data Augmentation for Consistency Training”. In:
Advances in Neural Information Processing Systems 33 (2020).

328

https://doi.org/10.18653/v1/D18-1045
https://www.aclweb.org/anthology/D18-1045
https://doi.org/10.18653/v1/2020.acl-main.194
https://doi.org/10.18653/v1/2020.acl-main.194
https://www.aclweb.org/anthology/2020.acl-main.194


Bibliography

[578] David Berthelot et al. “MixMatch: A Holistic Approach to Semi-Supervised Learn-
ing”. In: NeurIPS. 2019.

[579] Minsung Hyun, Jisoo Jeong, and Nojun Kwak. “Class-Imbalanced Semi-Supervised
Learning”. In: arXiv preprint arXiv:2002.06815 (2020).

[580] Joachim Bingel and Anders Søgaard. “Identifying Beneficial Task Relations for
Multi-Task Learning in Deep Deural Networks”. In: Proceedings of the 15th Conference
of the European Chapter of the Association for Computational Linguistics: Volume 2,
Short Papers. Valencia, Spain: Association for Computational Linguistics, Apr. 2017,
pp. 164–169. url: https://aclanthology.org/E17-2026.

[581] Connor Shorten and Taghi M Khoshgoftaar. “A Survey on Image Data Augmentation
for Deep Learning”. In: Journal of Big Data 6.1 (2019), pp. 1–48.

[582] Nitesh V Chawla et al. “SMOTE: Synthetic Minority Over-Sampling Technique”. In:
Journal of artificial intelligence research 16 (2002), pp. 321–357.

[583] Marius Mosbach, Maksym Andriushchenko, and Dietrich Klakow. “On the Stability
of Fine-tuning BERT: Misconceptions, Explanations, and Strong Baselines”. In: 9th
International Conference on Learning Representations. CONF. 2021.

[584] Ruize Wang et al. “K-adapter: Infusing knowledge into pre-trained models with
adapters”. In: arXiv preprint arXiv:2002.01808 (2020).

[585] Lucien Mehl. Automation in the legal world. National Physical Laboratory, 1958.

[586] Robert Dale. “Law and word order: NLP in legal tech”. In: Natural Language
Engineering 25.1 (2019), pp. 211–217.

[587] Samuel Gibbs. “Chatbot lawyer overturns 160,000 parking tickets in London and
New York”. In: The Guardian (June 2016). url: https://www.theguardian.com/
technology / 2016 / jun / 28 / chatbot - ai - lawyer - donotpay - parking - tickets -
london-new-york.

[588] Neel Guha et al. LegalBench: A Collaboratively Built Benchmark for Measuring Legal
Reasoning in Large Language Models. 2023. arXiv: 2308.11462 [cs.CL].

[589] Daniel Martin Katz et al. “Gpt-4 passes the bar exam”. In: Available at SSRN 4389233
(2023).

[590] Niklas Dehio, Malte Ostendorff, and Georg Rehm. “Claim Extraction and Law
Matching for COVID-19-related Legislation”. In: Proceedings of the Thirteenth Language
Resources and Evaluation Conference. 2022, pp. 480–490.

329

https://aclanthology.org/E17-2026
https://www.theguardian.com/technology/2016/jun/28/chatbot-ai-lawyer-donotpay-parking-tickets-london-new-york
https://www.theguardian.com/technology/2016/jun/28/chatbot-ai-lawyer-donotpay-parking-tickets-london-new-york
https://www.theguardian.com/technology/2016/jun/28/chatbot-ai-lawyer-donotpay-parking-tickets-london-new-york
https://arxiv.org/abs/2308.11462


Bibliography

[591] Rishi Bommasani et al. “On the opportunities and risks of foundation models”. In:
arXiv preprint arXiv:2108.07258 (2021).

[592] Haoxi Zhong et al. “JEC-QA: a legal-domain question answering dataset”. In:
Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 34. 05. 2020, pp. 9701–
9708.

[593] Nils Holzenberger, Andrew Blair-Stanek, and Benjamin Van Durme. “A dataset
for statutory reasoning in tax law entailment and question answering”. In: arXiv
preprint arXiv:2005.05257 (2020).

[594] Yuta Koreeda and Christopher D Manning. “ContractNLI: A dataset for document-
level natural language inference for contracts”. In: arXiv preprint arXiv:2110.01799
(2021).

[595] Dan Hendrycks et al. “Cuad: An expert-annotated nlp dataset for legal contract
review”. In: arXiv preprint arXiv:2103.06268 (2021).

[596] Shomir Wilson et al. “The creation and analysis of a website privacy policy corpus”.
In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers). 2016, pp. 1330–1340.

[597] Sebastian Zimmeck et al. “Maps: Scaling privacy compliance analysis to a million
apps”. In: Proc. Priv. Enhancing Tech. 2019 (2019), p. 66.

[598] Steven H Wang et al. “MAUD: An Expert-Annotated Legal NLP Dataset for Merger
Agreement Understanding”. In: arXiv preprint arXiv:2301.00876 (2023).

[599] Judith Eckle-Kohler, Roland Kluge, and Iryna Gurevych. “On the role of discourse
markers for discriminating claims and premises in argumentative discourse”. In:
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing.
2015, pp. 2236–2242.

[600] Jiaao Chen and Diyi Yang. “Structure-aware abstractive conversation summarization
via discourse and action graphs”. In: arXiv preprint arXiv:2104.08400 (2021).

[601] Karl Engisch, Thomas Würtenberger, and Dirk Otto. Einführung in das juristische
Denken. Kohlhammer Verlag, 2018.

[602] Anne von der Lieth Gardner. Artificial intelligence approach to legal reasoning. Tech. rep.
Stanford Univ., 1984.

[603] Kevin P Tobia. “Testing ordinary meaning”. In: Harv. L. Rev. 134 (2020), p. 726.

330



Bibliography

[604] Christopher D Manning et al. “The Stanford CoreNLP natural language processing
toolkit”. In: Proceedings of 52nd annual meeting of the association for computational
linguistics: system demonstrations. 2014, pp. 55–60.

[605] Mariana Neves and Jurica Ševa. “An extensive review of tools for manual annotation
of documents”. In: Briefings in bioinformatics 22.1 (2021), pp. 146–163.

[606] Pontus Stenetorp et al. “brat: a Web-based Tool for NLP-Assisted Text Annotation”.
In: Proceedings of the Demonstrations at the 13th Conference of the European Chapter
of the Association for Computational Linguistics. Avignon, France: Association for
Computational Linguistics, Apr. 2012, pp. 102–107. url: https://www.aclweb.org/
anthology/E12-2021.

[607] Jie Yang et al. “YEDDA: A lightweight collaborative text span annotation tool”. In:
arXiv preprint arXiv:1711.03759 (2017).

[608] Seid Muhie Yimam et al. “Webanno: A flexible, web-based and visually supported
system for distributed annotations”. In: Proceedings of the 51st Annual Meeting of the
Association for Computational Linguistics: System Demonstrations. 2013, pp. 1–6.

[609] Megumi Kameyama. “Recognizing referential links: An information extraction
perspective”. In: arXiv preprint cmp-lg/9707009 (1997).

[610] Tianyu Liu et al. “Autoregressive structured prediction with language models”. In:
arXiv preprint arXiv:2210.14698 (2022).

[611] María Granados Buey et al. “The AIS project: Boosting information extraction from
legal documents by using ontologies.” In: ICAART (2). 2016, pp. 438–445.

[612] Erik F Sang and Fien De Meulder. “Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition”. In: arXiv preprint cs/0306050
(2003).

[613] Dmitry Zelenko, Chinatsu Aone, and Anthony Richardella. “Kernel methods for
relation extraction”. In: Journal of machine learning research 3.Feb (2003), pp. 1083–
1106.

[614] Qi Li and Heng Ji. “Incremental joint extraction of entity mentions and relations”. In:
Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers). 2014, pp. 402–412.

[615] Zexuan Zhong and Danqi Chen. “A frustratingly easy approach for entity and
relation extraction”. In: arXiv preprint arXiv:2010.12812 (2020).

331

https://www.aclweb.org/anthology/E12-2021
https://www.aclweb.org/anthology/E12-2021


Bibliography

[616] Colin Raffel et al. “Exploring the limits of transfer learning with a unified text-to-text
transformer”. In: The Journal of Machine Learning Research 21.1 (2020), pp. 5485–5551.

[617] Zhen Wan et al. “Gpt-re: In-context learning for relation extraction using large
language models”. In: arXiv preprint arXiv:2305.02105 (2023).

[618] Erik F Sang and Sabine Buchholz. “Introduction to the CoNLL-2000 shared task:
Chunking”. In: arXiv preprint cs/0009008 (2000).

[619] Lorenda A Naylor. “Counting an invisible class of citizens: The LGBT population
and the US census”. In: Public Integrity 22.1 (2020), pp. 54–72.

[620] Jeffrey Mervis. “Census citizenship question is dropped, but challenges linger”. In:
Science 365.6450 (2019), pp. 211–211. issn: 0036-8075. doi: 10.1126/science.365.6450.
211. eprint: https://science.sciencemag.org/content/365/6450/211.full.pdf.
url: https://science.sciencemag.org/content/365/6450/211.

[621] RaJade M Berry-James, Susan T Gooden, and Richard Greggory Johnson III. “Civil
Rights, Social Equity, and Census 2020”. In: Public Administration Review 80.6 (2020),
pp. 1100–1108.

[622] Andrew Reamer. “Counting for dollars 2020: the role of the decennial census in the
geographic distribution of federal funds”. In: Initial Analysis 16 (2018).

[623] BV Elasticsearch. “Elasticsearch”. In: software], version 6.1 (2018).

[624] Jonathan E Vespa, David M Armstrong, Lauren Medina, et al. Demographic turning
points for the United States: Population projections for 2020 to 2060. US Department of
Commerce, Economics and Statistics Administration, US . . ., 2018.

[625] Marcos Eduardo Kauffman and Marcelo Negri Soares. “AI in legal services: new
trends in AI-enabled legal services”. In: Service Oriented Computing and Applications
14.4 (Dec. 2020), pp. 223–226. issn: 1863-2394. doi: 10.1007/s11761-020-00305-x.
url: https://doi.org/10.1007/s11761-020-00305-x.

[626] Jason Morris. Making Mischief With Open-Source Legal Tech: Radiant Law. Oct. 2019.
url: https://www-proquest-com.libproxy2.usc.edu/blogs-podcasts-websites/
making - mischief - with - open - source - legal - tech / docview / 2307652320 / se -
2?accountid=14749.

[627] Grant Vergottini. To go Open Source or Not? 2011. url: https://xcential.com/to-
go-open-source-or-not/.

332

https://doi.org/10.1126/science.365.6450.211
https://doi.org/10.1126/science.365.6450.211
https://science.sciencemag.org/content/365/6450/211.full.pdf
https://science.sciencemag.org/content/365/6450/211
https://doi.org/10.1007/s11761-020-00305-x
https://doi.org/10.1007/s11761-020-00305-x
https://www-proquest-com.libproxy2.usc.edu/blogs-podcasts-websites/making-mischief-with-open-source-legal-tech/docview/2307652320/se-2?accountid=14749
https://www-proquest-com.libproxy2.usc.edu/blogs-podcasts-websites/making-mischief-with-open-source-legal-tech/docview/2307652320/se-2?accountid=14749
https://www-proquest-com.libproxy2.usc.edu/blogs-podcasts-websites/making-mischief-with-open-source-legal-tech/docview/2307652320/se-2?accountid=14749
https://xcential.com/to-go-open-source-or-not/
https://xcential.com/to-go-open-source-or-not/


Bibliography

[628] Katrina June Lee, Susan Azyndar, and Ingrid AB Mattson. “A New Era: Integrating
Today’s Next Gen Research Tools Ravel and Casetext in the Law School Classroom”.
In: Rutgers Computer & Tech. LJ 41 (2015), p. 31.

[629] Adam Z Wyner and Wim Peters. “On Rule Extraction from Regulations.” In: JURIX.
Vol. 11. 2011, pp. 113–122.

[630] Nicola Zeni et al. “GaiusT: supporting the extraction of rights and obligations for
regulatory compliance”. In: Requirements engineering 20.1 (2015), pp. 1–22.

[631] Borja Espejo-Garcia et al. “End-to-end sequence labeling via deep learning for
automatic extraction of agricultural regulations”. In: Computers and Electronics in
Agriculture 162 (2019), pp. 106–111.

[632] Lucy Lu Wang et al. “CORD-19: The COVID-19 Open Research Dataset”. In:
Proceedings of the 1st Workshop on NLP for COVID-19 at ACL 2020. Online: Association
for Computational Linguistics, July 2020. url: https://www.aclweb.org/anthology/
2020.nlpcovid19-acl.1.

[633] Mohammad Golam Sohrab et al. “BENNERD: A Neural Named Entity Linking
System for COVID-19”. In: Proceedings of the 2020 Conference on Empirical Methods
in Natural Language Processing: System Demonstrations. Online: Association for
Computational Linguistics, Oct. 2020, pp. 182–188. doi: 10.18653/v1/2020.emnlp-
demos.24. url: https://www.aclweb.org/anthology/2020.emnlp-demos.24.

[634] Tom Hope et al. “SciSight: Combining faceted navigation and research group
detection for COVID-19 exploratory scientific search”. In: Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing: System Demonstrations.
Online: Association for Computational Linguistics, Oct. 2020, pp. 135–143. doi:
10.18653/v1/2020.emnlp-demos.18. url: https://www.aclweb.org/anthology/
2020.emnlp-demos.18.

[635] Alexander Spangher et al. “Enabling Low-Resource Transfer Learning across COVID-
19 Corpora by Combining Event-Extraction and Co-Training”. In: Proceedings of the 1st
Workshop on NLP for COVID-19 at ACL 2020. Online: Association for Computational
Linguistics, July 2020. url: https://www.aclweb.org/anthology/2020.nlpcovid19-
acl.4.

[636] Karin Verspoor et al., eds. Proceedings of the 1st Workshop on NLP for COVID-19
at ACL 2020. Online: Association for Computational Linguistics, July 2020. url:
https://www.aclweb.org/anthology/2020.nlpcovid19-acl.0.

[637] Karin Verspoor et al., eds. Proceedings of the 1st Workshop on NLP for COVID-19 (Part
2) at EMNLP 2020. Online: Association for Computational Linguistics, Dec. 2020.
url: https://www.aclweb.org/anthology/2020.nlpcovid19-2.0.

333

https://www.aclweb.org/anthology/2020.nlpcovid19-acl.1
https://www.aclweb.org/anthology/2020.nlpcovid19-acl.1
https://doi.org/10.18653/v1/2020.emnlp-demos.24
https://doi.org/10.18653/v1/2020.emnlp-demos.24
https://www.aclweb.org/anthology/2020.emnlp-demos.24
https://doi.org/10.18653/v1/2020.emnlp-demos.18
https://www.aclweb.org/anthology/2020.emnlp-demos.18
https://www.aclweb.org/anthology/2020.emnlp-demos.18
https://www.aclweb.org/anthology/2020.nlpcovid19-acl.4
https://www.aclweb.org/anthology/2020.nlpcovid19-acl.4
https://www.aclweb.org/anthology/2020.nlpcovid19-acl.0
https://www.aclweb.org/anthology/2020.nlpcovid19-2.0


Bibliography

[638] Markus Hartung, Micha-Manuel Bues, and Gernot Halbleib. Legal tech. CH Beck,
2017.

[639] Jeongsub Lim. “THE MYTHOLOGICAL STATUS OF THE IMMEDIACY OF THE
MOST IMPORTANT ONLINE NEWS An analysis of top news flows in diverse
online media”. In: Journalism Studies 13 (Feb. 2012), pp. 71–89. doi: 10.1080/1461670X.
2011.605596.

[640] Neil J. Thurman. “How Live Blogs are Reconfiguring Breaking News”. In: 2013. url:
https://api.semanticscholar.org/CorpusID:153429039.

[641] Michael Karlsson and Jesper Strömbäck. “Freezing the Flow of Online News :
Exploring Approaches to Study the Liquidity of Online News”. In: 2009. url:
https://api.semanticscholar.org/CorpusID:15653949.

[642] Andreas Widholm. “Tracing Online News in Motion”. In: Digital Journalism 4 (2016),
pp. 24–40. url: https://api.semanticscholar.org/CorpusID:62063121.

[643] Michael Karlsson, Christer Clerwall, and Lars Nord. “Do Not Stand Corrected:
Transparency and Users Attitudes to Inaccurate News and Corrections in Online
Journalism”. In: Journalism Mass Communication Quarterly 94 (June 2016). doi:
10.1177/1077699016654680.

[644] Sydney L. Forde, Robert E. Gutsche, and Juliet Pinto. “Exploring “ideological correc-
tion” in digital news updates of Portland protests & police violence”. In: Journalism 24
(2022), pp. 157–176. url: https://api.semanticscholar.org/CorpusID:248910766.

[645] Michael Karlsson. “RITUALS OF TRANSPARENCY”. In: Journalism Studies 11 (2010),
pp. 535–545. url: https://api.semanticscholar.org/CorpusID:142571133.

[646] Neil J. Thurman and Nic Newman. “The Future of Breaking News Online?” In:
Journalism Studies 15 (2014), pp. 655–667. url: https://api.semanticscholar.org/
CorpusID:143987445.

[647] Damien Neadle, Elisa Bandini, and Claudio Tennie. “Testing the individual and
social learning abilities of task-naıve captive chimpanzees (Pan troglodytes sp.) in a
nut-cracking task”. In: PeerJ 8 (2020), e8734.

[648] Doreen Thompson and James A. Russell. “The ghost condition: imitation versus
emulation in young children’s observational learning.” In: Developmental psychology
40 5 (2004), pp. 882–9. url: https://api.semanticscholar.org/CorpusID:10208845.

[649] Victoria Horner and Andrew Whiten. “Causal knowledge and imitation/emulation
switching in chimpanzees (Pan troglodytes) and children (Homo sapiens)”. In:

334

https://doi.org/10.1080/1461670X.2011.605596
https://doi.org/10.1080/1461670X.2011.605596
https://api.semanticscholar.org/CorpusID:153429039
https://api.semanticscholar.org/CorpusID:15653949
https://api.semanticscholar.org/CorpusID:62063121
https://doi.org/10.1177/1077699016654680
https://api.semanticscholar.org/CorpusID:248910766
https://api.semanticscholar.org/CorpusID:142571133
https://api.semanticscholar.org/CorpusID:143987445
https://api.semanticscholar.org/CorpusID:143987445
https://api.semanticscholar.org/CorpusID:10208845


Bibliography

Animal Cognition 8 (2005), pp. 164–181. url: https://api.semanticscholar.org/
CorpusID:1949770.

[650] Carl Bereiter and Marlene Scardamalia. “The psychology of written composition”.
In: 1987. url: https://api.semanticscholar.org/CorpusID:143781031.

[651] Nancy I. Sommers. “Revision Strategies of Student Writers and Experienced
Adult Writers”. In: College Composition & Communication (1980). url: https://
api.semanticscholar.org/CorpusID:42322944.

[652] Dirk Van Hulle. “Introduction: The draft in literary history”. In: Drafts in Literary
History. Open-access introduction. John Benjamins / Association Internationale de
Littérature Comparée, 2024. doi: 10.1075/chlel.xxxv.int.

[653] Ronald A Finke, Thomas B Ward, and Steven M Smith. Creative Cognition: Theory,
Research, and Application. MIT Press, 1992.

[654] Alexander Spangher et al. “NewsEdits 2.0: Learning the Intentions Behind Updating
News”. In: arXiv preprint arXiv:2411.18811 (2024). Submitted on 27 Nov 2024.

[655] Roman Grundkiewicz and Marcin Junczys-Dowmunt. “The wiked error corpus:
A corpus of corrective wikipedia edits and its application to grammatical error
correction”. In: International Conference on Natural Language Processing. Springer.
2014, pp. 478–490.

[656] Manaal Faruqui et al. “WikiAtomicEdits: A Multilingual Corpus of Wikipedia Edits
for Modeling Language and Discourse”. In: arXiv preprint arXiv:1808.09422 (Oct.
2018), pp. 305–315. doi: 10.18653/v1/D18-1028. url: https://www.aclweb.org/
anthology/D18-1028.

[657] Fan Zhang and Diane Litman. “Annotation and Classification of Argumentative
Writing Revisions”. In: Proceedings of the Tenth Workshop on Innovative Use of NLP for
Building Educational Applications. Denver, Colorado: Association for Computational
Linguistics, June 2015, pp. 133–143. doi: 10.3115/v1/W15-0616. url: https://
aclanthology.org/W15-0616.

[658] Darsh Shah, Tal Schuster, and Regina Barzilay. “Automatic fact-guided sentence
modification”. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 34.
05. 2020, pp. 8791–8798.

[659] Tazin Afrin et al. “Annotation and Classification of Evidence and Reasoning
Revisions in Argumentative Writing”. In: Proceedings of the Fifteenth Workshop on
Innovative Use of NLP for Building Educational Applications. 2020, pp. 75–84.

335

https://api.semanticscholar.org/CorpusID:1949770
https://api.semanticscholar.org/CorpusID:1949770
https://api.semanticscholar.org/CorpusID:143781031
https://api.semanticscholar.org/CorpusID:42322944
https://api.semanticscholar.org/CorpusID:42322944
https://doi.org/10.1075/chlel.xxxv.int
https://doi.org/10.18653/v1/D18-1028
https://www.aclweb.org/anthology/D18-1028
https://www.aclweb.org/anthology/D18-1028
https://doi.org/10.3115/v1/W15-0616
https://aclanthology.org/W15-0616
https://aclanthology.org/W15-0616


Bibliography

[660] Manaal Faruqui et al. “WikiAtomicEdits: A Multilingual Corpus of Wikipedia Edits
for Modeling Language and Discourse”. In: Proceedings of EMNLP. Brussels, Belgium:
Association for Computational Linguistics, 2018, pp. 305–315. doi: 10.18653/v1/D18-
1028.

[661] Aurélien Max and Guillaume Wisniewski. “Mining Naturally-occurring Corrections
and Paraphrases from Wikipedia’s Revision History (WiCoPaCo)”. In: arXiv preprint
arXiv:2202.12575 (2022).

[662] Irshad Ahmad Bhat and Talita Anthonio. “Towards Modeling Revision Requirements
in wikiHow Instructions”. In: Conference on Empirical Methods in Natural Language
Processing. 2020. url: https://api.semanticscholar.org/CorpusID:226262307.

[663] Suzanne M Kirchhoff. US newspaper industry in transition. DIANE Publishing, 2010.

[664] Johannes Daxenberger and Iryna Gurevych. “A Corpus-Based Study of Edit Cate-
gories in Featured and Non-Featured Wikipedia Articles”. In: Proceedings of COLING
2012. Mumbai, India: The COLING 2012 Organizing Committee, Dec. 2012, pp. 711–
726. url: https://www.aclweb.org/anthology/C12-1044.

[665] Johannes Daxenberger and Iryna Gurevych. “Automatically classifying edit cate-
gories in Wikipedia revisions”. In: Proceedings of the 2013 Conference on Empirical
Methods in Natural Language Processing. 2013, pp. 578–589.

[666] Peter Kin-Fong Fong and Robert P Biuk-Aghai. “What did they do? deriving high-
level edit histories in wikis”. In: Proceedings of the 6th International Symposium on
Wikis and Open Collaboration. 2010, pp. 1–10.

[667] Chip Scanlan. “Writing from the top down: Pros and cons of the inverted pyramid”.
In: Poynter Online., Erişim tarihi 14 (2003).

[668] Zhe Quan et al. “An efficient framework for sentence similarity modeling”. In:
IEEE/ACM Transactions on Audio, Speech, and Language Processing 27.4 (2019), pp. 853–
865.

[669] Sheikh Abujar, Mahmudul Hasan, and Syed Akhter Hossain. “Sentence similarity
estimation for text summarization using deep learning”. In: Proceedings of the 2nd
International Conference on Data Engineering and Communication Technology. Springer.
2019, pp. 155–164.

[670] Haipeng Yao, Huiwen Liu, and Peiying Zhang. “A novel sentence similarity model
with word embedding based on convolutional neural network”. In: Concurrency and
Computation: Practice and Experience 30.23 (2018), e4415.

336

https://doi.org/10.18653/v1/D18-1028
https://doi.org/10.18653/v1/D18-1028
https://api.semanticscholar.org/CorpusID:226262307
https://www.aclweb.org/anthology/C12-1044


Bibliography

[671] Qingyu Chen et al. “Sentence similarity measures revisited: ranking sentences in
PubMed documents”. In: Proceedings of the 2018 ACM International Conference on
Bioinformatics, Computational Biology, and Health Informatics. 2018, pp. 531–532.

[672] Tomoyuki Kajiwara and Mamoru Komachi. “Building a Monolingual Parallel
Corpus for Text Simplification Using Sentence Similarity Based on Alignment
between Word Embeddings”. In: Proceedings of COLING 2016, the 26th International
Conference on Computational Linguistics: Technical Papers. Osaka, Japan: The COLING
2016 Organizing Committee, Dec. 2016, pp. 1147–1158. url: https://aclanthology.
org/C16-1109.

[673] Xiaoqi Jiao et al. “TinyBERT: Distilling BERT for Natural Language Understanding”.
In: Findings of the Association for Computational Linguistics: EMNLP 2020. Online:
Association for Computational Linguistics, Nov. 2020, pp. 4163–4174. doi: 10.18653/
v1/2020.findings-emnlp.372. url: https://aclanthology.org/2020.findings-
emnlp.372.

[674] Harold W Kuhn. “The Hungarian method for the assignment problem”. In: Naval
research logistics quarterly 2.1-2 (1955), pp. 83–97.

[675] Kishore Papineni et al. “Bleu: a method for automatic evaluation of machine trans-
lation”. In: Proceedings of the 40th annual meeting of the Association for Computational
Linguistics. 2002, pp. 311–318.

[676] Kathleen A Hansen et al. “Local breaking news: Sources, technology, and news
routines”. In: Journalism Quarterly 71.3 (1994), pp. 561–572.

[677] Justin Lewis and Stephen Cushion. “The thirst to be first: An analysis of breaking
news stories and their impact on the quality of 24-hour news coverage in the UK”.
In: Journalism Practice 3.3 (2009), pp. 304–318.

[678] Mats Ekström, Amanda Ramsälv, and Oscar Westlund. “The Epistemologies of
Breaking News”. In: Journalism Studies 22.2 (2021), pp. 174–192.

[679] Nikki Usher. “Breaking news production processes in US metropolitan newspapers:
Immediacy and journalistic authority”. In: Journalism 19.1 (2018), pp. 21–36.

[680] Mingyu Derek Ma et al. “EventPlus: A Temporal Event Understanding Pipeline”.
In: arXiv preprint arXiv:2101.04922 (2021).

[681] Alexander Spangher et al. ““Don’t quote me on that”: Finding Mixtures of Sources
in News Articles”. In: Proceedings of Computation+Journalism Conference. 2020.

[682] Rujun Han, Qiang Ning, and Nanyun Peng. “Joint Event and Temporal Relation
Extraction with Shared Representations and Structured Prediction”. In: Proceedings

337

https://aclanthology.org/C16-1109
https://aclanthology.org/C16-1109
https://doi.org/10.18653/v1/2020.findings-emnlp.372
https://doi.org/10.18653/v1/2020.findings-emnlp.372
https://aclanthology.org/2020.findings-emnlp.372
https://aclanthology.org/2020.findings-emnlp.372


Bibliography

of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language Processing (EMNLP-ĲCNLP). Hong
Kong, China: Association for Computational Linguistics, Nov. 2019, pp. 434–444.
doi: 10.18653/v1/D19-1041. url: https://aclanthology.org/D19-1041.

[683] Nasrin Mostafazadeh et al. “A corpus and cloze evaluation for deeper understanding
of commonsense stories”. In: Proceedings of the 2016 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies.
2016, pp. 839–849.

[684] Nathanael Chambers and Dan Jurafsky. “Unsupervised learning of narrative event
chains”. In: Proceedings of ACL-08: HLT. 2008, pp. 789–797.

[685] Te-Lin Wu et al. “Understanding Multimodal Procedural Knowledge by Sequencing
Multimodal Instructional Manuals”. In: Proceedings of the Conference of the 60th
Annual Meeting of the Association for Computational Linguistics (ACL). 2022.

[686] David M Blei, Andrew Y Ng, and Michael I Jordan. “Latent dirichlet allocation”. In:
Journal of machine Learning research 3.Jan (Mar. 2003), pp. 993–1022. issn: 1532-4435.

[687] Xiaoya Li et al. “Dice Loss for Data-imbalanced NLP Tasks”. In: Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics. Online: Association
for Computational Linguistics, July 2020, pp. 465–476. doi: 10.18653/v1/2020.acl-
main.45. url: https://aclanthology.org/2020.acl-main.45.

[688] Norm Goldstein. The Associate Press Rules Regulations and General Orders. 1953. url:
https://www.apstylebook.com/.

[689] Ryan L Boyd, Kate G Blackburn, and James W Pennebaker. “The narrative arc:
Revealing core narrative structures through text analysis”. In: Science advances 6.32
(2020), eaba2196.

[690] Nasrin Mostafazadeh et al. “Lsdsem 2017 shared task: The story cloze test”. In:
Proceedings of the 2nd Workshop on Linking Models of Lexical, Sentential and Discourse-
level Semantics. 2017, pp. 46–51.

[691] Zhixing Tian et al. “Scene Restoring for Narrative Machine Reading Comprehension”.
In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP). 2020, pp. 3063–3073.

[692] Nanyun Peng et al. “Towards controllable story generation”. In: Proceedings of the
First Workshop on Storytelling. 2018, pp. 43–49.

338

https://doi.org/10.18653/v1/D19-1041
https://aclanthology.org/D19-1041
https://doi.org/10.18653/v1/2020.acl-main.45
https://doi.org/10.18653/v1/2020.acl-main.45
https://aclanthology.org/2020.acl-main.45
https://www.apstylebook.com/


Bibliography

[693] Jiaao Chen, Jianshu Chen, and Zhou Yu. “Incorporating structured commonsense
knowledge in story completion”. In: Proceedings of the AAAI Conference on Artificial
Intelligence. Vol. 33. 01. 2019, pp. 6244–6251.

[694] Motti Neiger and Keren Tenenboim-Weinblatt. “Understanding journalism through
a nuanced deconstruction of temporal layers in news narratives”. In: Journal of
Communication 66.1 (2016), pp. 139–160.

[695] Diyi Yang et al. “Identifying semantic edit intentions from revisions in wikipedia”. In:
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing.
2017, pp. 2000–2010.

[696] Kostas Saltzis. “Breaking news online: How news stories are updated and maintained
around-the-clock”. In: Journalism practice 6.5-6 (2012), pp. 702–710.

[697] George R Doddington et al. “The automatic content extraction (ace) program-tasks,
data, and evaluation.” In: Lrec. Vol. 2. 1. Lisbon. 2004, pp. 837–840.

[698] Teun A Van Dĳk. News as discourse. Lawrence Erlbaum Associates, 1998.

[699] Sha Li, Heng Ji, and Jiawei Han. “Document-Level Event Argument Extraction
by Conditional Generation”. In: Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language
Technologies. Ed. by Kristina Toutanova et al. Online: Association for Computational
Linguistics, June 2021, pp. 894–908. doi: 10.18653/v1/2021.naacl-main.69. url:
https://aclanthology.org/2021.naacl-main.69.

[700] Kung-Hsiang Huang, Sam Tang, and Nanyun Peng. “Document-level Entity-based
Extraction as Template Generation”. In: Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing. Ed. by Marie-Francine Moens et al. Online
and Punta Cana, Dominican Republic: Association for Computational Linguistics,
Nov. 2021, pp. 5257–5269. doi: 10.18653/v1/2021.emnlp-main.426. url: https:
//aclanthology.org/2021.emnlp-main.426.

[701] I Hsu et al. “DEGREE: A data-efficient generation-based event extraction model”.
In: arXiv preprint arXiv:2108.12724 (2021).

[702] Yixin Nie et al. “Adversarial NLI: A New Benchmark for Natural Language Under-
standing”. In: Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics. Association for Computational Linguistics, 2020.

[703] Rujun Han, Xiang Ren, and Nanyun Peng. “Econet: Effective continual pretraining of
language models for event temporal reasoning”. In: arXiv preprint arXiv:2012.15283
(2020).

339

https://doi.org/10.18653/v1/2021.naacl-main.69
https://aclanthology.org/2021.naacl-main.69
https://doi.org/10.18653/v1/2021.emnlp-main.426
https://aclanthology.org/2021.emnlp-main.426
https://aclanthology.org/2021.emnlp-main.426


Bibliography

[704] Qingyu Tan, Hwee Tou Ng, and Lidong Bing. “Towards benchmarking and improv-
ing the temporal reasoning capability of large language models”. In: arXiv preprint
arXiv:2306.08952 (2023).

[705] Siheng Xiong et al. “Large language models can learn temporal reasoning”. In: arXiv
preprint arXiv:2401.06853 (2024).

[706] Jungo Kasai et al. “RealTime QA: What’s the Answer Right Now?” In: arXiv preprint
arXiv:2207.13332 (2022).

[707] Talita Anthonio, Irshad Bhat, and Michael Roth. “wikiHowToImprove: A Resource
and Analyses on Edits in Instructional Texts”. English. In: Proceedings of the 12th
Language Resources and Evaluation Conference. Marseille, France: European Language
Resources Association, May 2020, pp. 5721–5729. isbn: 979-10-95546-34-4. url:
https://aclanthology.org/2020.lrec-1.702.

[708] Ildiko Pilan et al. “A dataset for investigating the impact of feedback on student
revision outcome”. In: 12th Conference on Language Resources and Evaluation (LREC
2020). European Language Resources Association (ELRA). 2020, pp. 332–339.

340

https://aclanthology.org/2020.lrec-1.702


Glossary

Mathematical Notation

• x: Event / context under judgment (e.g., a policy item from SFBOS or article text being evaluated) that

conditions the decision or trajectory; serves as the input whose properties and surroundings drive π.

(Sections 1.2, 2.2, 2.2.1, 2.2.3, 2.3, 2.3.3, 2.3.1, 2.3.3.1, 2.2.4, 2.2.2, 2.3.3.4, 3.2, 3.2.1, 3.2.3, 3.4.1.2, 3.3, 3.3.2,

3.4.3.2, 3.4.3, 3.4.3.3, 4.3.1.2, 3.4, 4.1, 4.2, 4.2.3.1, 4.4, 4.2.2, 4.3.2, 4.3.2.1, 4.3, 4.3.4, 5.1, 5.2, 5.2.1.1, 5.2.1.3, 5.3,

5.2.3.1, 5.2.3.2, 5.2.3, 5.2.3.6, 5.3.4, 5.2.3.5, 5.3.5, 5.3.3, 4.3.4.1)

• g = sn: Goal-state artifact (e.g., a published article or realized homepage layout) observable at the end

of a trajectory and used by inverse models (e.g., qθ(· | g)) to infer latent actions; supervision signal when

actions are hidden. (Sections 1.2, 2.2, 2.3.1, 2.3, 2.2.3, 3.2.1, 3.2, 3.4, 4.1, 4.2.3.1, 3.3.2, 5.1, 5.2)

• a, at: (Latent) action / decision variable indicating what an expert does at a step (e.g., cover/ignore, retrieve

source, place lead, edit sentence); instantiated per chapter as selection, sourcing, structuring, or editing moves.

(Sections 2.2, 2.2.1, 2.3.1, 3, 3.2, 3.4, 4.1, 4.2.3.1, 5.1, 5.2, 5.3)

• a = a1, a2, . . .: A full sequence of actions (the decision sequence realized by the expert or a model policy).

(Sections 2.2.1, 3, 3.4, 5.2)

• st: State at step t (e.g., a draft state or version-t of an article) aggregating history and constraining feasible

next actions. (Sections 2.2.1, 4.1, 4.2, 5.2, 5.3)

• s = s1, s2, . . .: A full sequence of states (intermediate artifacts along the trajectory). (Sections 4.1, 5.2)

• τ = [(a1, s1), (a2, s2), . . .]: State–action trajectory whose realization yields the observed artifact g = sn.

(Sections 2.2.1, 3, 4.1)

• τ = [(a1,1, s1,1), . . . , (a1,2, s1,2), . . . , (a2,1, s2,1), . . .]: Trajectory in the NewsEdits experiment where i indexes

published versions and j drafts within a version; si,nj
(final draft of version i) is observable, intra-version

drafts are unobserved. (Sections 5.2, 5.3)

• π(·), π̂(·): Policy (true) and learned policy mapping contexts/states to actions/trajectories. Variations

include: π(a | x) (binary selection), π(a | x,C) (selection with competitor set), π̂(a | x) and π̂(a | x,C)

(learned classifiers/rankers), π(τ | x) (trajectory distribution), and π∗(at+1 | st) (greedy/optimal next-

action under a planner). (Sections 2.2, 2.3.1, 2.3, 3, 3.4, 4.1, 5.3)

• qθ(·): Inverse model mapping observables back to latent actions/labels for supervision/analysis. Variations
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include: qθ(a | g) (single action from end-state), qθ(a | g) (multi-action set), qθ(τ | g) (full trajectory from g),

and qθ(· | st, st+1) (inferring edit intentions from version deltas). (Sections 2.2.3, 3.2, 3.2.1, 4.2.3.1, 5.3)

• R(·) vs. R(x): Reward/utility in decision modeling vs. observation-channel recall (probability that a true

decision leaves detectable evidence); disambiguated by argument and chapter. (Section 2.2)

• M = (S,A, P, r, γ): MDP tuple for general framing (states, actions, dynamics, reward, discount), including

the horizon-1 specialization. (Section 2.2.1)

• c, C: External context and competitor set (e.g., other homepage items considered jointly) that modulate

preferences/utilities and make prominence judgments set-dependent. (Section 2.3.1)

• Mψ(x, g): Learned linking/alignment function in the PRM-based observation channel estimating coverage

(x↔ g) from auxiliary attributes; supervises binary publishing decisions. (Section 2.2.3)

• l: Binary link indicator in the PRM implementing Mψ(x, g) = p(l | x, g,h), denoting whether g covers x.

(Section 2.2.3)

• hi: Auxiliary PRM attributes (content/source-derived features) used in Mψ(x, g) = p(l | x, g,h), where

h = h1, h2, . . .. (Section 2.2.3)

• po(x > x′): Observed pairwise homepage preference for outlet o, derived from layout cues (position/-

size/graphics); used to recover latent utilities that rank items. (Section 2.3.3)

• uθ(x,C): Latent utility consistent with observed pairwise preferences over a competitor set C (e.g.,

Bradley–Terry/Thurstone/Plackett–Luce formulations) used to supervise π̂. (Section 2.3.1)

• Dtrain, Dtest: Time-based splits for forward-generalization evaluation under temporal drift. (Section 2.2.4)

• qi (source): The i-th element of the source set Q—a person, document, dataset, record, or observation

used in sentence→source mapping α—with channel type and discourse metadata (role, centrality, stance).

(Sections 3.2, 3.2.1, 3.4.1.2)

• D=D, Q=Q: Universes of sentences and sources for detection/identification tasks. (Section 3.2)

• α(x): Sentence→source subset mapping α permitting multiple sources/channels per sentence; supports

evaluation of attribution quality. (Section 3.2)

• πplan, πexec: High-level planner and lower-level executor policies in hierarchical reporting; the planner

selects discourse/narrative needs, the executor issues concrete retrieval actions. (Section 3.4)

• ν(g)=ν(g): Narrative needs (e.g., context, countervoice, data) that a completed story should satisfy; used

in schema-level planning/evaluation. (Section 3.4)

• R̂: NLI-derived document-level score proxy (e.g., aggregation of entail/contradict signals) used to

operationalize “covers” vs. “challenges.” (Section 3.3.2)
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• a⃗: Target sentence-level discourse codes (control signals) specifying desired structural roles for planning/-

generation. (Section 4.2.1.1)

• H, Ĥ : LM hidden states and their controlled perturbations under Hidden-State Control (HSC) to emphasize

desired roles during generation. (Section 4.2.3.2)

• α, β: Sentence-level beam search mixture weights trading off generator likelihood (fluency) and labeler

guidance (structural conformity). (Section 4.3.2)

• γ, a: Classifier-Free Guidance (CFG) strength and complementary “negative” labels for steering generation

away from undesired properties. (Section 4.4)

• m(i, j) = b|i−j|: Discount prior attenuating label influence by positional distance for localized structural

control. (Section 4.2.2)

• w: Sliding-window half-width controlling the local context considered when enforcing structure. (Section

4.2.2)

• st+1, ∆(st, st+1): Successor version and observed change summary used by emissions/intention models

to infer edit types/intentions. (Sections 5.2, 5.2.1.3)

• A, at,ij : Edit-intention label space and per-(version/sentence-pair) latent intentions in revision modeling.

(Section 5.3)

• E(∆t | st, st+1): Emission/observation estimator mapping version deltas to measurable edit types for

supervision. (Section 5.2.1.3)

• y(1..3), ct,k, b(·): Task targets for three predictive setups (existence of next version; edit count bins; local

outcomes), per-type edit counts, and the binning function. (Section 5.2.3.1)

• Simasym: Asymmetric sentence similarity robust to merges/splits used in sentence alignment graphs for

revision pairing. (Section 5.2.1.3)

• ϕ(·): Word/embedding similarity function employed in alignment/scoring modules for linking sentences

across versions. (Section 5.2.1.3)

• p(l=FactUpdate | si, D): Per-sentence factual-update likelihood within document D, enabling selective

behaviors (e.g., abstention when evidence may be stale). (Sections 5.3.4, 5.3.5)
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Definitions

• Emulation Learning (EL): Framework for modeling complex, creative tasks outlined in this dissertation.

The approach is to learn policies by recovering latent actions/trajectories from end-states g via an inverse

model qθ(a|g), and then to train a policy model π(a|x) from starting states to: (1) learn human rewards and

objectives, preserving them in agentic processes (2) reach goal states g that are similar or improved from

observational data; (3) match human distributional signatures across tasks (selection, sourcing, structuring,

editing). (Sections 1.2, 2.2, 3, 4.1, 5.1)

• Horizon-1 setting: In reinforcement learning, the horizon refers to the number of steps an agent considers

into the future when making decisions. This can be a fixed, finite number of steps or an infinite duration.

In news-finding, we reduce of state-action trajectory planning to one step – predicting the newsworthiness

of a piece of text, enabling simpler inverse modeling and evaluation. (Section 2.2)

• Observation / emission channel: The measurable “footprints” of actions (links, pairwise layout preferences,

sentence operations) used to supervise inverse modeling and to evaluate learned policies. Specifically, an

emissions channel is the mechanism by which an underlying, unobserved (or hidden) state generates an

observable output. An observation channel is a broader term for how a piece of information or data is

collected. The concepts are central to models that analyze systems where the direct cause is hidden, and

only its effects can be seen, notably the Hidden Markov Model (HMM).(Sections 2.2.3, 2.3.3.1, 5.2.1.3)

• Reward Function: Clarifies the latent desirability of actions. R(st, at, st+1) specifies the immediate

numerical feedback an agent receives from the environment after taking an action at in state st+1 and

transitioning to a new state st+1. Under maximum-entropy views classifier log-odds can act as affine

proxies when true rewards are unavailable. (Section 2.2)

• Utility Function: Clarifies the latent desirability of actions. The utility function, often represented by

value functions like V (s) (state-value function) or Q(s, a) (action-value function), quantifies the long-term

desirability of a state or a state-action pair. Unlike the immediate reward, utility considers future rewards,

often discounted by a factor γ to prioritize immediate rewards over delayed ones. (Section 2.2)

• Policy learning / prediction Training π̂ to imitate inferred actions or predicting action likelihoods (e.g.,

which sentences will be updated). Policy learning and prediction involve learning optimal actions (policies)

or predicting outcomes under a given policy, often in reinforcement learning or decision-making contexts.
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Policy prediction determines the value or outcome of a specific policy, while policy learning aims to find

the best policy to achieve a goal, sometimes by first learning a world model to predict future outcomes and

then using those predictions to optimize the policy.(Sections 2.2, 5.3.4)

• Compositionality / Predictability: Hypothesis that sources and discourse moves co-occur in structured,

learnable patterns (set-level coupling), enabling models to predict missing/next sources and assess

structured dependence. Evaluated with (i) an ablation probe that removes sentences attributed to a source

and tests detection of the removal vs. a matched no-op, and (ii) a NewsEdits probe that predicts whether a

new source will be added in the next version; these findings motivate set-aware selection objectives (e.g.,

submodular gains, DPPs) when choosing sources jointly. (Sections 3, 3.2.3; Fig. 3.4, Fig. 3.4b)

• Pairwise preference model: a statistical or machine learning framework used to predict the outcome of

head-to-head comparisons between pairs of items. In our work, we convert homepage layout features into

po(x > x′) and recovers a consistent latent ordering via uθ(x,C). (Section 2.3.3.1)

• Transitive utilities assumption: a core principle from economics that is sometimes applied in reinforcement

learning (RL), particularly in multi-objective or preference-based settings. It posits that an agent’s

preferences are consistent and can be represented by a single, real-valued utility function. For instance,

assumes pairwise comparisons factorize a global ranking usable for supervision and evaluation. (Section

2.3.3.1)

• Planner / executor this paradigm in reinforcement learning (RL) involves a hierarchical approach where

a high-level planner and a low-level executor collaborate to achieve complex tasks. This architecture is

particularly beneficial for long-horizon problems and sparse reward environments, where a single agent

might struggle with credit assignment and exploration. In our case, the planner sets discourse/narrative

goals and an executor issues concrete retrieval or writing actions. (Section 3.4, 4.2, 4.3)

• Options / Semi-MDP Options, as a form of temporal abstraction in reinforcement learning, create a

Semi-Markov Decision Process (SMDP) where decisions are made over temporally extended actions

("options") rather than single steps. High-level steps are represented as single abstract actions (e.g.,

the Get-Source action, at, which constitutes actions: Identify Need→Retrieve Source→Obtain Information).

(Sections 3.2.3, 3.4)

• Submodular maximization involves finding the best subset of items from a larger set to maximize a

function that exhibits a “diminishing returns” property, meaning the benefit of adding an item decreases
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as more items are included. Used when selecting multiple sources jointly to balance coverage and diversity.

(Section 3.2.3)

• Determinantal Point Processes (DPPs) are probabilistic models that define a probability distribution over

all possible subsets of items, specifically favoring diverse subsets over redundant ones by using determinants

to model negative correlations. Connected with submodular maximization because the problem of finding

the most likely subset in a DPP—known as the Maximum a Posteriori (MAP) inference—can be formulated

and approximately solved as a submodular maximization problem. (Section 3.2.3)

• KL divergence, also known as relative entropy, is a measure from information theory that quantifies

how one probability distribution differs from a reference distribution. In our case, we used it to compare

discourse mixtures or roles across policies π∗ and π̂. (Section 3.4.3.3)

• Bootstrap significance a method for conducting hypothesis tests that does not rely on assumptions about

the data’s underlying distribution. Instead, it uses resampling with replacement from the observed data to

generate a simulated sampling distribution for a test statistic. Used here to estimate confidence in retrieval

or prediction gains. (Section 3.4.3)

• Ablation study / probe A kind of hypothesis testing that removes experimental conditions, factors or

modalities (e.g., policy text, meetings) to quantify their contribution to performance in the overall task.

(Sections 2.2.4, 3.2.3)

• Inverse RL / Offline RL concerns Identifiability issues (multiple rewards explain behavior) and support

mismatch when learning only from logged data. (Section 3.2.3)

• Sparsity / locality / stability (assumptions) Assumptions that a small, local set of cues often determines

intentions and that labels remain stable enough to be learnable. (Section 5.3.2.2)

• Multitask learning a subfield of machine learning that trains a single model to learn multiple related tasks

at the same time. By simultaneously learning tasks with a shared representation, the model leverages

common knowledge and correlations among them, which can lead to better performance and more efficient

learning than training separate models for each task. (Section 5.2.3.2)

346



Glossary Terms

Model-Specific Terms

• PRM (Probabilistic Relational Model) Factorization of P (l | g, x) through auxiliary attributes to improve

linking. (Section 2.2.3)

• Linking function a function, Mψ(x, g), to determine if nodes on a graph should be linked. In our case, we

aligned events and artifacts; aggregated non-matches imply a=0. (Section 2.2.3)

• Recall of channel R(x) Ability of an observation channel to capture all true positives; if the recall is high,

this means if an event is not measured positive, it is negative. In our case, we used this to measure the

probability that coverage of event x yields a detectable g. (Section 2.2)

• Model abstention Strategy of an LLM answering a question to not answer a question if it’s evidence is

likely stale or contradicted by imminent updates. (Section 5.3.5)

• Homepage layout parsing Extract article “cards” from screenshots/HTML. An “article card” is all the text

(e.g. headline, summary, picture, link) associated with a single article on a homepage. (Sections ??, 2.3.3)

• DOM-tree bootstrapping A heuristic for detecting full article cards on a homepage. We detected all <a>’s,

and traversed up the HTML to obtain the maximal-sized subtree still containing a single <a>. (Section

2.3.3)

• Detectron2 (ResNet-101+FPN) Classic computer vision detector model. In our case, trained on bootstraps

for robust card localization. (Section 2.3.3)

• L1 loss Sparisity-inducing loss for linear/logistic regression. (Section 2.3.3)

• OCR + YOLO screening Quality control for screenshots and HTML conformance. (Section 2.3.3)

• SingleFile a library that captures an HTML page as a single file (e.g. all associated style sheets, assets, are

included).

• Internet Archive / Wayback Web archives that snapshot pages online and preserve them. (Section 2.3)

• TF–IDF, BM25 Two classical methods for embedding text as sparse vectors. Used for sparse retrieval
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baselines. (Sections 2.2.3, 3.4.3)

• SBERT / OpenAI embeddings Two modern methods for generating dense embeddings for linking and

retrieval. (Section 2.2.3)

• DPR Supervised dense passage retrieval for training embedding spaces to retrieve relevant documents

from queries. (Section 3.4.3)

• Coreference resolution Canonicalization of entity mentions/pronouns. (Section 3.2.1)

• Doc-level NLI A method developed to aggregate sentence-pair NLI measurements into document-level

signals (entails/contradicts/neutral). (Section 3.3.2)

• BigBird / Longformer / LED Long-context transformer-based embedding architectures for detection and

intention tagging. (Sections 3.2.1, 5.3.2.2)

• Interleaved retrieval Using LLMs to generate queries to retrievers, analyze documents, and issue followup

queries. (Section 3.4.3.2)

• Planned interleaved retrieval Interleaving with discourse-aware planning; ways of projecting queries into

the future. (Sections 3.4.3, 3.4.3.2)

• Re-ranking Reordering retriever results based on discourse intent. (Section 3.4.3.2)

• SFR-Embedding-2_R A very large transformer-based embedding model used for retrieval. (Section 3.4.3)

• Sentence alignment Determining when two sentences contain substantially the same facts, information

and intent. In our case, used to link sentences across article versions. (Section 5.2.1.3)

• Bipartite matching graph After linking sentences, the bipartite graph over article versions determines

when sentences were edited/added/removed in article updates. (Section 5.2.1.3)

• Asymmetric matching similarity A sentence-matching algorithm we developed with optimal performance.

(Section 5.2.1.3)

• Hungarian matching an efficient combinatorial optimization algorithm that finds an optimal assignment

in a weighted bipartite graph. (Section 5.2.1.3)

• BLEU / n-gram overlap Sentence overlap by measuring exact word-level matches. (Section 5.2.1.3)
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• Word embeddings Dense vectors generated per word for similarity and prediction (via models like

RoBERTa). (Sections 5.2.1.3, 5.2.3.2).

• Contextualization layer A lightweight Transformer over sentence embeddings to add contextual informa-

tion. (Section 5.2.3.2)

• Event / quote detection Pipelines to detect events and quotations/sources in sentences. (Section 5.2.2)

• News discourse model Assigns Main/Cause/Distant roles. (Section 5.2.2)

• Argumentation features Capture argumentative structure. (Section 5.3.2.2)

• NLI (textual entailment) Features capturing entailment/contradiction. (Section 5.3.2.2)

• LDA (topic modeling) A classic, unsupervised approach to latent variable modeling that discover latent

“topics” underlying a collection of documents topics. (Section 5.2.3.5)

• Logistic regression (TF–IDF) A classical and simple text classification approach based on frequency-

weighted word-counts. Sparse baseline for π(a | x). (Section 2.2.4)

• GPT3-Babbage (fine-tuned) Early GPT3 model, Babbage was smaller than Curie and Da Vinci. We used

them to study pretraining as well as finetuning in multiple experiments. (Section 2.2.4)

• GPT-3/4 variants A modern GPT model, available for performing zero-/few-shot and fine-tuned variations.

(Sections 3.2.1, 3.3)

• LLaMA-3-8B / Llama 3.1 / Mixtral / Command-R Open-source large language models. Used primarily to

generate text, process text data by making decisions, or, in our case, as planning/normalization models.

(Sections 3.3, 4.3.1.2, 4.3.4)

• DistilBERT / RoBERTa / FLAN-T5 Standard text models that project text into high dimensional embeddings.

They are used for many different tasks, including retrieval, classification (with a head) and, in our case,

pairwise comparisons. (Sections 2.3.3.1, 4.2.3.3)

• PEFT Parameter-efficient fine-tuning; an efficient method for tuning large language models with limited

data and minimal computing power. (Sections 2.3.3.1, 4.3.4)

• PTLM, GPT-2-base Pretrained Language model. In our case, used to provide naive word likelihoods and
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embeddings. (Sections 4.2.3.2, 4.2)

• Oracle trial A trial of a multi-task experiment where at least step is presolved with ground truth. Used to

provide an upper bound. In our case, we gave gold supervision indicating whether an update happened,

used to bound abstention strategies. (Section 5.3.5)

• Human upper bound Expert performance used to contextualize model scores and task difficulty. (Sections

5.2.3.6, 5.3.4)

• Control codes / discourse labels a⃗, or actions in our structural generation experiments (Chapter 4). A set

of sentence-level structure control codes (e.g. “Provide Background”). (Section 4.2.1.1)

• Emulation loss Lemul A distributional distance between schema-level summaries of trajectories (e.g., role

mixtures) for model vs. human behavior. (Section 3.4)

• Local-only / Past-aware / Full-sequence Structural awareness regimes for label modeling: specifies how

much of the control code/action trajectory the state-transition model is made aware of before generating

st. (Section 4.2.2)

• Hidden-State Control (HSC) A method for sequentially controlled generation. Perturb hidden states

H→Ĥ to upweight desired labels. (Section 4.2.3.2)

• Direct-Probability Control (DPC) A method for sequentially controlled generation. Multiply LM and

labeler scores to steer next tokens. (Section 4.2.3.2)

• Editing (mask-and-infill) A method for controlling text generation. Performing masking and infilling (i.e.

editing) on generated text to increase the likelihood that a label applies to the text. (Section 4.2.3.3)

• Sentence-level beam search Mix generating and label-scoring each sentence-generation step to optimize

the sequence of sentences. (Section 4.3.2)

• CFG (Classifier-Free Guidance) A constrative sampling method for upweighting the effect of the prompt

on the generation. Subtract from the prompt-conditioned next-token distribution the unconditioned

distribution (Section 4.4)

• Negative prompting Use a to steer away from undesired attributes/actions. (Section 4.4)

• Bradley–Terry / Thurstone / Plackett–Luce Classical pairwise/listwise preference formulations. (Section
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2.3.1)

• DAgger Interactive aggregation of expert corrections to counter compounding errors in sequential

decision-making. (Section 3.2.3)

• Temporal hold-out Train/test split by time to emulate deployment and reduce leakage from future events.

(Section 2.2.4)

Journalism & Newsroom Practice Terms

• Newsworthiness Human judgments on how important, relevant and interesting a piece of information is

to a reader.

• Newsworthiness prediction A machine learning designed to test a model’s ability to predict how

newsworthy event x is. (Sections 2.2, 2.3)

• News values Normative criteria guiding coverage decisions made by journalists. (Section 2.2)

• News-finding Applying newsworthiness predictions across many events x in order to find candidate

events/policies for coverage. (Section 2.2)

• Homepage preference signals Layout decisions made by homepage editors (position/size/graphics) that

encode how newsworthy or salient they believe a story is. (Section 2.3)

• Context / competitor set C Editorial choices are relative (e.g. one day may have more news stories, or more

important breaking news). Modeling C captures set-effects where prominence depends on co-present

items. (Section 2.3.1)

• Page One / homepage meetings Editorial meetings at the New York Times to set daily priorities. (Section 2.3)

• Above the fold / Page-A1 High-importance positions in the newspaper for the most newsworthy articles.

(Section 2.3)

• Article card Visual block housing a story, summary, picture and link; on homepages. (Sections 2.3, 2.3.3)

• San Francisco Board of Supervisors (SFBOS) Local government we studied; produces policies and

announcements and outlet for labels. (Sections 2.2.2, 2.2)
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• San Francisco Chronicle (SFChron): a local News outlet in San Francisco, California (Sections 2.2.2, 2.2)

• Public comment A period during a city council meeting when members of the public are allowed to ask

questions and make comments about legislation. (Section 2.2.4)

• Policy item A motion, bill, amendment, settlement, law; any other piece of text conveying decisions about

government. (Section 2.2.3)

• Source-finding A task testing a machine’s ability to identify narrative needs in a story→ find relevant

sources→, obtain information from the source. (Section 3)

• Source (informational) Person, document, record, observation or database contributing facts (includes

explicitly mentioned and implicit sources). (Section 3.2)

• Attribution Linking a sentence in a news article to one/more sources that provided information for that

sentence (explicit/implicit). (Section 3.2)

• Source channels The style in which the information is provided by the source and how it is conveyed

in the news article. IncludeS: Direct/Indirect Quote, Statement/Speech, Email/Social, Published Work,

Lawsuit/Court, Proposal/Order/Law, Price Signal, Direct Observation, etc. (Section 3.2.1)

• Press release (PR) An announcement or document authored by a public or private organization designed

to be covered by a news outlet. (Sections 3.3, 3.3.2)

• Contrastive summarization News coverage that both contextualizes and challenges a PR. (Section 3.3.2)

• Angle The lens/idea a journalist pursues on a PR. (Sections 3.3, 3.3.3.2)

• Creativity (1–5) In our case, defined as how different sourcing or angle decisions are from the original PR.

More creative news articles are more different from PRs. (Section 3.3.3.2)

• Primary/secondary sources How important a source is to a central narrative in a news article. (Section

3.2.2)

• Article versions / updates Every time an article is republished to the same URL, we can collect a new article

version. (Section 3.2.2)

• Beats / coverage types Different topics or areas of coverage in a newsroom; usually with a dedicated
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reporter, or a consistent tempo of coverage (e.g. a “police beat” covers police activities). (Sections 3.2.3,

3.4.2)

• Breaking news news articles that cover events that are updating very quickly. We study norms on

uncertainty, updating, verification under time-pressure. (Section 5.2.2)

• Section / beat effects Topic/section patterns in predictability and edit mix. (Sections 5.2.3.5, 5.3.3)

Communication / Discourse & Narrative Terms

• Discourse structure Functional organization of sentences toward an argumentative purpose. (Sections 4.1,

4.2.1.1)

• Macro-structure Global organization aiding compression/navigation/recall. (Section 4.1)

• Narrative schemata Canonical arrangements improving recall/coherence. (Section 4.1)

• Topicality Degree of on-topic content relative to headline/source. (Section 4.2.6)

• Introductory elements Opening/scene-setting roles (DiscoSum schema). (Section 4.3.2.1)

• Contextual details Background elaboration (DiscoSum schema). (Section 4.3.2.1)

• Event narration Core event description (DiscoSum schema). (Section 4.3.2.1)

• Engagement directive Reader-engaging/eliciting role (DiscoSum schema). (Section 4.3.2.1)

• Discourse roles (sources) Functions such as Main Actor, Background, Counter, Expert, Data, Confirmation,

Analysis, Broadening (plus anecdotal/subject variants). (Section 3.4.1.2)

• Centrality High/Medium/Low importance of a source. (Section 3.4.1.2)

• Stance Support/oppose/neutral posture of a source. (Section 3.4.2)

• Contextualization vs. challenge “References/entails” vs. “contradicts” relations for effective coverage.

(Section 3.3.2)

• Partial order ≺Weak source ordering induced from structure/priors. (Section 3.2)
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• Equifinality Many trajectories can yield the same g. (Section 3.4)

• Narrative arc Structured progression of a story over versions. (Sections 5.1, 5.2.2)

• News discourse roles (EDA) Main, Cause, Distant roles in news prose. (Section 5.2.2)

Cognitive Science Terms

• Emulation (learning) Reproducing outcomes/goals without copying actions step-by-step. (Section 5.1)

• Imitation (learning) Copying observed actions directly. (Section 5.1)

• Ghost condition Agent hidden; only apparatus changes observed—isolates emulation. (Section 5.1)

• Planning–translating–reviewing Classical cyclical model of writing. (Section 5.1)

• Genetic criticism Studying drafts/revisions as traces of the creative process. (Section 5.1)

• Spatial organization as preference Readers scan top-left; editors guide attention via spatial hierarchy.

(Section 2.3)

• Visual salience cues Position, size, typography, imagery signal importance. (Section 2.3)

Evaluation & Metrics

• ROC (AUC-ROC) Area under ROC curve. (Section 2.2.4)

• F1 / Micro–Macro F1 Harmonic mean of precision/recall; class- and instance-averaged variants. (Sections

2.2.4, 5.2.3.2)

• Recall@10 Fraction of truly newsworthy items among top-10. (Section 2.2.4)

• MRR Mean reciprocal rank of first relevant item. (Section 2.2.4)

• Cohen’s κ Inter-annotator agreement. (Section 4.2.6)

• Kendall’s τ Rank correlation across outlets. (Section 2.3.3.4)

• Human preference / ID accuracy Expert judgments on recommendations and origin identification. (Section
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2.2.4)

• Label accuracy Match of sentence to target discourse label. (Section 4.2.6)

• Grammar Human grammaticality/local coherence (1–5). (Section 4.2.6)

• Logical flow Human rating of story progression (1–5). (Section 4.2.6)

• On-topic Human topical relevance (1–5). (Section 4.2.6)

• Perplexity (PPL) Automatic fluency proxy and selection signal. (Sections 4.2.3.3, 4.2.7)

• Diversity (n-grams) Automatic diversity indicator. (Section 4.3)

• ROUGE-L Summary overlap metric. (Section 4.3.4.1)

• FactCC Factual consistency classifier. (Section 4.3.4.1)

• AlignScore Factual correspondence metric. (Section 4.3.4.1)

• Match Score (MS) Position-wise label match between predicted vs. target sequences. (Section 4.3.4.1)

• LCS / Levenshtein distance Longest common subsequence / edit distance over label sequences. (Section

4.3.4.1)
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Discourse Schemas Introduced

VD3 News Discourse Schema (Section 4.5)

1. Lede: An opening hook that engages the reader and sets up the main event (may be

an anecdote, question, or scene).

2. Main Event: The focal event or subject of the report (the precipitating, most recent,

or central phenomenon).

3. Consequence: An event or outcome directly caused by, or immediately following,

the Main Event.

4. Previous Event: A specific prior event that directly leads to or explains the Main

Event.

5. Circumstances: The immediate world-state or situational context preceding the Main

Event, not tied to a single event.

6. Secondary Event: An event occurring in parallel with the Main Event, often illustrative

of a broader pattern or trend.

7. Historical Event: A more distal past event (e.g., weeks or longer prior) that remains

causally or thematically relevant.

8. Expectation: Projected or anticipated future developments and their likelihood.

9. Evaluation: Journalist or source commentary assessing significance, quality, or

implications of events.

10. Explanation: Causal or justificatory reasoning about why events occur or how they

relate.
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11. Verbal Reaction: Reported remarks or quotes that do not take on another discourse

role.

Source Discourse Roles (Section 3.4)

1. Main Actor: The central entity driving or experiencing the focal event; supplies the

core claims or actions.

2. Background: Context, history, definitions, or timelines that help interpret the event.

3. Counter: Opposing or alternative perspectives that challenge or complicate the main

narrative.

4. Expert: Domain expertise offering technical explanation or informed interpretation.

5. Data: Quantitative evidence (statistics, records, indicators) substantiating claims.

6. Confirmation: Independent corroboration of previously asserted facts.

7. Analysis: Synthesis that draws connections and articulates causal or thematic

takeaways.

8. Broadening: Framing that situates the case within larger geographies, domains, or

trends.

9. Anecdotes: Illustrative first-person or vignette-style accounts.

10. Subject: A directly affected person or group embodying the story’s stakes.

Source Centrality (Section 3.4)

1. High: Indispensable; removing it renders the article incomplete or misleading.

2. Medium: Important but not indispensable; the article remains coherent without it.

3. Low: Replaceable support; adds color or redundancy but is not required.
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Stance (Section 3.4)

1. Authoritative: Provides first-hand or central knowledge to affirm a central claim.

2. Supporting: Affirms or strengthens the main claim or action.

3. Opposing: Disputes or undermines the main claim or action.

4. Neutral: Describes or contextualizes without taking a side.

5. Informative: Provides information without taking a stance.

Document-Level NLI (Section 3.3)

1. Entailment (Reference): Article content is consistent with, or directly supported by,

the press release.

2. Contradiction (Challenge): Article content conflicts with or refutes the press release.

3. Neutral: No semantic commitment with respect to the press release claim.

Source Information Channels (Section 3.2)

1. Direct Quote: Verbatim speech attributed to a person or document.

2. Indirect Quote: Paraphrased content attributed to a person or document.

3. Statement / Public Speech: Formal remarks, briefings, or official statements.

4. Email / Social Media Post: On-the-record statements via email or platform posts.

5. Published Work / Press Report: Prior reporting or publications used as sources.

6. Proposal / Order / Law: Legal or policy instruments (bills, orders, regulations).

7. Court Proceeding: Filings, rulings, complaints, dockets, or courtroom statements.
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8. Price Signal: Market or economic indicators used as evidence.

9. Direct Observation: Reporter’s first-hand witnessing or recordings.

10. Other: Sourced content not covered by the above categories.

Sentence-Level State-Change Types (Section 5.2)

1. Addition: A sentence appears in the new version but not in the prior version.

2. Deletion: A sentence appears in the prior version but not in the new version.

3. Edit: A sentence changes surface form or specifics while preserving core meaning.

4. Refactor: A sentence is repositioned (moved up/down) to change emphasis or flow.

Edit-Intentions Ontology — Coarse Families (Section 5.3)

1. Factual: Alters represented world-state (event/source updates, corrections).

2. Style: Modifies presentation (clarity, tone, syntax) without changing substance.

3. Narrative/Contextual: Reshapes framing via background, analysis, or anecdotes.

4. Other: Housekeeping or non-semantic cases (e.g., alignment issues).

Edit-Intentions Ontology — Fine-Grained Elements (Section 5.3)

1. Event Update: Revises an event mention or its attributes (status, timing, details).

2. Quote/Source Added: Introduces a new source or quotation.

3. Correction: Fixes previously published factual information.

4. Style-Guide / Copyedit: Conforms to house style or improves readability.

5. Emphasis / De-emphasis: Adjusts salience, often via position or summarization.
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6. Add Background: Adds contextual or historical information.

7. Add Analysis: Adds interpretation that connects facts or explains implications.

8. Add Anecdote: Adds illustrative, case-based narrative material.

9. Unchanged: No substantive intention beyond persistence across versions.

10. Incorrect Link: Alignment/linking error between versions (bookkeeping).

Local Update Outcomes (Per-Sentence Prediction Targets)

1. Deletion: Target sentence will be removed in the next version.

2. Edit: Target sentence will be revised while preserving core meaning.

3. Unchanged: Target sentence will remain the same.

4. Refactor: Up: Target sentence will move upward in position.

5. Refactor: Down: Target sentence will move downward in position.

6. Refactor: Unchanged: Target sentence will not change position.

7. Addition Above: New sentence(s) will be inserted above the target.

8. Addition Below: New sentence(s) will be inserted below the target.
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